Parábolas no Plano

Olá, leitores!

Hoje chegou aqui até mim uma dúvida envolvendo parábolas no plano cartesiano. Pra simplificar, a pergunta é a que segue:

(AFA — Adaptada) A distância entre o vértice e o foco da parábola y^2 + 4x - 4 = 0 é igual a 1 unidade de comprimento.

Alexandre Luis

Antes de sair respondendo, vamos ver como é o formato de uma parábola no plano cartesiano. Se a parábola tem eixo de simetria paralelo ao eixo Oy teremos:

(y - y_0) = \frac{1}{2p}(x - x_0)^2

Em que (x_0, y_0) são as coordenadas do vértice V, p é chamado de parâmetro da parábola e corresponde à distância entre o foco F(x_F,y_F) da parábola e a reta diretriz y = d com d = y_0 - \frac{p}{2}. Além disso, as coordenadas do foco são F(x_0, y_0 + \frac{p}{2}).

Por outro lado, se o eixo de simetria é paralelo à Ox teremos:

(x - x_0) = \frac{1}{2p}(y - y_0)^2

Claro que, agora a reta diretriz será x = d, com d = x_0 - \frac{p}{2} e F(x_0 + \frac{p}{2},y_0). Do problema dado, podemos reescrever a expressão da parábola e obter:

y^2 = -4x + 4 \Rightarrow (y - 0)^2 = -4(x-1) \Rightarrow (x - 1) = \frac{1}{2 \cdot (-2)} (y - 0)^2

Portanto, p = -2, e claro, d = 1 - \frac{-2}{2} = 2, também F(0,0) e V(1,0). Finalmente sabemos que, de fato VF = 1\,\textrm{u.c.}, medida horizontalmente. Veja a figura a seguir:

A distância BF é sempre igual à distancia BC.

E aí, gostou da solução? Compartilhe!

Grande abraço.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EFOMM e Determinantes

Olá pessoal!

Hoje trago uma duvida sobre uma questão da EFOMM de 2010, enviada pela Laura Helena.

Já fazendo um marketing básico, temos duas provas resolvidas (clique AQUI pra ver) da EFOMM que queremos, em breve, ampliar para mais.

Vamos à dúvida:

(EFOMM) Sejam A, B e C matrizes de ordem 3 \times 3 inversíveis tais que:

\det (A^{-1}) = 3 e \det ((AB)^{-1} + \frac{I}{2}) = 4

Sabendo-se que I é a matriz identidade de ordem 3, tal que I = -3C^{-1}(2B^{-1} + A)^{T}, o determinante de C é igual a:

a) - \frac{8}{3}

b) - \frac{32}{3}

c) -9

d) -54

e) -288

Enviada por Laura Helena

Então vamos lá.

Como queremos o determinante de C e temos uma expressão que relaciona as matrizes A, B e C, vamos começar por aí:

I = -3C^{-1}(2B^{-1} + A)^{T}

Multiplicando ambos os lados pela esquerda por -\frac{1}{3}C teremos:

(-\frac{1}{3}) \cdot C \cdot I = (-\frac{1}{3}) \cdot C \cdot (-3C^{-1}) \cdot (2B^{-1} + A)^{T}

Resultando em:

(-\frac{1}{3}) \cdot C = I \cdot (2B^{-1} + A)^{T}

Continuando e aplicando a transposta de ambos os lados:

[(-\frac{1}{3}) \cdot C]^T = 2B^{-1} + A \Rightarrow 2B^{-1} = [(-\frac{1}{3}) \cdot C]^T - A

Finalmente:

B^{-1} = \frac{1}{2} \cdot [(-\frac{1}{3}) \cdot C]^T - \frac{1}{2} \cdot A \Rightarrow B^{-1} = \frac{1}{2} \cdot (-\frac{1}{3}) \cdot C^T - \frac{1}{2} \cdot A

Pronto. Sabendo que (AB)^{-1} = B^{-1} \cdot A^{-1}, podemos agora trabalhar sobre a expressão dada:

\det((AB)^{-1} + \frac{I}{2}) = 4 \Rightarrow \det (B^{-1} \cdot A^{-1} + \frac{I}{2}) = 4

Da inversa de B que achamos:

\det((\frac{1}{2} \cdot (-\frac{1}{3}) \cdot C^T - \frac{1}{2} \cdot A) \cdot A^{-1} + \frac{I}{2}) = 4 \Rightarrow \det(-\frac{1}{6} \cdot C^T \cdot A^{-1}  - \frac{1}{2} \cdot A \cdot A^{-1} + \frac{I}{2}) = 4

Como A \cdot A^{-1} = I, teremos:

\det(-\frac{1}{6} \cdot C^T \cdot A^{-1}) = 4

Aolicando o Teorema de Binet, clique AQUI para ver o que já falamos disso, e as propriedades envolvendo o determinante da transposta, o determinante de uma matriz multiplicada por um número real e o determinante da inversa, teremos:

(-\frac{1}{6})^3 \cdot \det (C^T) \cdot \det (A^{-1}) = 4

Logo:

-\frac{1}{216} \cdot \det C \cdot 3 = 4 \Rightarrow \det C = -288

Chegando, finalmente (Ufa!) à opção E.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Um Sistema Simples

Olá leitores, recebi uma dúvida há pouco, que envolve sistemas lineares. Vamos dar uma olhada.

Calcule a soma x + y + z no sistema abaixo:

\left\{\begin{array}{lll} 66x + 33y + 2z = 1 \\ 2x + 66y + 33z = 2 \\ 33x + 2y + 66 z = 98 \\ \end{array}\right.

Paolla Souza

Bom, em primeiro lugar é necessário saber que, se um sistema é composto de equações lineares, então a equação obtida pela soma das equações do sistema pode substituir qualquer equação do sistema, mantendo o conjunto solução intacto — que é uma aplicação direta do Teorema de Jacobi em uma matriz.

Daí, como só queremos x + y + z e não os valores individuais, só precisamos somar as três equações e teremos:

66x + 2x + 33x + 33y + 66y + 2y + 2z + 33z + 66z = 1 + 2 + 98

Portanto:

101 x + 101 y + 101 z = 101 \Rightarrow x + y + z = 1

Viu, basta uma boa ideia para resolver rápido. Mas claro, embora não tenhamos feito isso, você pode resolver o sistema, encontrando os valores das incógnitas e depois calcular a soma resultante de seus valores. Vá em frente!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Matrizes, Fatoração e Polinômios

Olá pessoal, estou de volta com uma questão da UNIRIO, trazida como dúvida pra mim, que envolve matrizes inversíveis e fatoração de polinômios. O problema segue abaixo:

(UNIRIO) Para que valor(es) real(is) de x a matriz \left[\begin{array}{ccc} 1 & x - 3 & 4 \\ 3 & 0 & -x \\ -2x & 4 & -8 \\ \end{array} \right] é inversível?

Enviada por Beatriz Marcondes

Sabemos que uma matriz tem inversa se, e somente se, seu determinante é diferente de zero. Daí podemos calcular o determinante pela regra de Sarrus:

0 + 48 + 2x^2(x-3) - 0 + 4x + 24(x-3) \ne 0

Desenvolvendo e agrupando os termos semelhantes:

2x^3 - 6x^2 + 28x - 24 \ne 0

Como todos os coeficientes são pares podemos dividir toda a equação por 2:

x^3 - 3x^2 + 14x - 12 \ne 0

Agora vem o problema. Quem são as raízes deste polinômio. Neste caso, é fácil! Perceba que a soma dos coeficientes do polinômio é zero: 1 + (-3) + 14 + (-12) = 0, isto nos garante que 1 é uma das raízes deste polinômio. Para confirmar este fato, basta subistituir a incógnita por 1:

1^3 - 3 \cdot 1^2 + 14 \cdot 1 - 12 = 0

A recíproca do Teorema de D’Alembert garante que, se x = a é raiz de um polinômio P(x), então P(x) é divisível por x-a, isto é, P(x) é da forma P(x) = (x-a) \cdot P_1(x). Dito isso, vamos fatorar P(x) (sim, eu sei, poderíamos usar Briot-Ruffini). Vamos lá:

x^3 - 3x^2 + 14x - 12 \ne 0 \Rightarrow x^3 - x^2 - 2x^2 + 2x + 12x - 12 \ne 0

Assim:

x^2(x - 1) -2x (x-1) + 12(x - 1) \ne 0 \Rightarrow (x-1)(x^2 - 2x + 12) \ne 0

Só precisamos agora ver quais são as raízes do outro fator do produto acima: x^2 - 2x + 12 \ne 0. Calculando o discriminante teremos \Delta = (-2)^2 - 4 \cdot 1 \cdot 12 = -44 < 0, logo não há raízes reais, significando que este fator nunca é zero. Portanto, o único valor que torna o determinante nulo é x = 1. Logo, para a matriz ser inversível devemos ter x \ne 1.

Espero ter ajudado.

Vou deixar um vídeo sobre o teorema de D’Alembert:

Minha iniciativa é GRATUITA.

Você pode AJUDAR doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Produto de Matrizes e Matriz Inversa

Hoje, trazemos um problema que envolve o produto de matrizes e a obtenção da matriz inversa de uma matriz quadrada.

Vejamos o problema proposto:

Considere as matrizes M = \left( \begin{array}{rrr} 1 & -1 & 3 \\ 0 & 1 & 0 \\ 2 & 3 & 1 \\ \end{array} \right), N = \left( \begin{array}{rrr} 1 & 0 & 2 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \\ \end{array} \right), P = \left( \begin{array}{r} 0 \\ 1 \\ 0 \\ \end{array} \right) e X = \left( \begin{array}{r} x \\ y \\ z \\ \end{array} \right). Se X é solução de M^{-1}NX = P, então x^2 + y^2 + z^2 é igual a:

a) 35

b) 17

c) 38

d) 14

e) 29

Enviada por Marcus Tavares

Primeiro, vamos usar a definição de matriz inversa sobre a expressão dada, multiplicando-a pela esquerda por M:

M^{-1}NX = P \Rightarrow M \cdot M^{-1}NX = MP \Rightarrow INX = MP \Rightarrow NX = MP

Em que I representa a identidade de ordem 3. Repetindo o processo, multiplicando a mesma expressão por N^{-1} pela esquerda, teremos:

N^{-1}NX =N^{-1}MP \Rightarrow IX = N^{-1}MP \Rightarrow X = N^{-1}MP

Precisaremos inverter a matriz N (infelizmente, pois vai dar trabalho… :(, mas VQV). Para inverter N faremos:

N \cdot N^{-1} = I_3 \Rightarrow \left(\begin{array}{rrr} 1 & 0 & 2 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \\ \end{array}\right) \cdot \left(\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \\ \end{array}\right) = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right)

Isto vai gerar alguns sistemas de equações, vamos ao primeiro:

\left\{ \begin{array}{r} a + 2g = 1 \\ 3a + 2d = 0 \\  a + d + g = 0 \end{array}\right.

Da primeira equação teremos a = 1 -2g; substituindo na segunda: 3 \cdot (1-2g) + 2d = 0, portanto, d = \frac{6g - 3}{2}. Indo para a terceira:

1 - 2g +  \frac{6g - 3}{2} + g = 0 \Rightarrow 2 - 4g + 6g - 3 + 2g = 0 \Rightarrow g = \frac{1}{4}

Agora calculamos d:

d = \frac{6 \cdot \frac{1}{4} - 3}{2} \Rightarrow d = -\frac{3}{4}

E para o valor de a, sabemos a = \frac{1}{2}. Vamos agora para o segundo sistema:

\left\{ \begin{array}{r} b + 2h = 0 \\ 3b + 2e = 1 \\  b + e + h = 0 \end{array}\right.

Veja que a matriz dos coeficientes é a mesma, mudando apenas as incógnitas. Houve também uma pequena mudança na matriz dos termos independentes. Continuando; da primeira equação, encontramos b = -2h e, substituindo na terceira:

-2h + e + h = 0 \Rightarrow e = h

Colocando estes resultados na segunda:

3 \cdot(-2h) + 2h = 1 \Rightarrow h = -\frac{1}{4}

Portanto temos b = \frac{1}{2} e e = -\frac{1}{4}. Finalmente, vamos ao terceiro sistema de equações:

\left\{ \begin{array}{r} c + 2i = 0 \\ 3c + 2f = 0 \\  c + f + i = 1 \end{array}\right.

Da primeira equação obtemos c = -2i, usando na segunda, teremos:

3 \cdot (-2i) + 2f = 0 \Rightarrow f = 3i

Indo pra última equação:

-2i + 3i + i = 1 \Rightarrow i = \frac{1}{2}

Portanto, f = \frac{3}{2} e c = -1. Então, finalmente temos a inversa de N:

N^{-1} = \left[ \begin{array}{rrr} \frac{1}{2} & \frac{1}{2} & -1 \vspace{1 mm} \\ -\frac{3}{4} & -\frac{1}{4} & \frac{3}{2} \vspace{1 mm} \\ \frac{1}{4} & - \frac{1}{4} & \frac{1}{2} \\ \end{array} \right]

Queremos calcular X = N^{-1}MP que pode ser feito como X = N^{-1}(MP), logo temos MP = \left[ \begin{array}{r} -1 \\ 1 \\ 3 \\ \end{array}\right], e agora teremos a inversa de N multiplicada pelo resultado anterior, que nos dará X = \left[ \begin{array}{r} -\frac{1}{2} + \frac{1}{2} -3 \vspace{1 mm} \\  \frac{3}{4} -\frac{1}{4} + \frac{9}{2} \vspace{1 mm} \\ -\frac{1}{4} - \frac{1}{4} + \frac{3}{2}  \\ \end{array}\right].

Finalmente, podemos escrever: X = \left[ \begin{array}{r} -3 \\ 5 \\ 1 \end{array}\right]. Portanto x = -3, y = 5 e z = 1, daí x^2 + y^2 + z^2 = 9 + 25 + 1 = 35. Opção A.

Problema trabalhoso, mas bacana, gostei!

Fique com um vídeo sobre equações matriciais.

Minha iniciativa é GRATUITA.

Você pode AJUDAR doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Matrizes Inversíveis

Você sabe quando uma matriz é inversível?

Uma matriz A é inversível (ou invertível) quando admite inversa (ou seja, não falei nada!). Mas para admitir inversa o determinante de A deve ser diferente de zero, isto é, A só admite inversa se, e somente se, \det A \ne 0.

Vejamos um exemplo.

Sejam m e n números reais com m \ne n e as matrizes A = \left( \begin{array}{cc} 2 & 1 \\ 3 & 5 \end{array} \right) e B = \left( \begin{array}{rr} -1 & 1 \\ 0 & 1 \end{array} \right). Para que a matriz mA + nB seja não inversível é necessário que:

a) m e n sejam positivos

b) m e n sejam negativos

c) m e n tenham sinais contrários

d) n^2 = 7m^2

Enviada por Marcus Tavares

Vamos então calcular a matriz pedida antes de procurar seu determinante:

mA + nB =\left( \begin{array}{rr} 2m & m \\ 3m & 5m \end{array} \right) + \left( \begin{array}{rr} - n &  n \\ 0 &  n \end{array} \right) = \left( \begin{array}{rr} 2m - n & m + n \\ 3m & 5m + n \end{array} \right)

Calculando agora \det(mA + nB) encontramos:

\det(mA + nB) = (2m - n)(5m + n) - (m+n) \cdot 3m

Para que a matriz seja não inversível, devemos ter seu determinante nulo:

(2m - n)(5m + n) - (m+n) \cdot 3m = 0

Desenvolvendo:

10m^2 + 2mn - 5mn - n^2 - (3m^2 + 3mn) = 0

Logo:

7m^2 - 6mn - n^2 = 0

Veja que, se n = 0 teremos 7m^2 = 0, logo m = n = 0, mas m \ne n, logo, podemos dividir toda a expressão por n^2:

7 \cdot (\frac{m}{n})^2 - 6 \cdot  \frac{m}{n} - 1 = 0

Resolvendo:

\frac{m}{n} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 7 \cdot (-1)}}{2 \cdot 7}

Finalmente:

\frac{m}{n} = \frac{6 \pm \sqrt{36 + 28}}{14} \Rightarrow \frac{m}{n} = \frac{6 \pm 8}{14}

Há portanto, dois valores: \frac{m}{n} = 1, mas nesse caso, m = n, o que não é permitido pelas condições do problema; ou \frac{m}{n} = -\frac{1}{7} < 0 e, nesse caso, m e n têm sinais opostos, nos levando, então à opção C.

Pra fechar, vou deixar um vídeo sobre a inversa de uma matriz:

Espero que ajude.

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Teorema de Binet

Você conhece o Teorema de Binet? É o que vamos falar hoje.

O Teorema de Binet diz respeito ao produto de matrizes e sua relação com o produto de matrizes. O teorema diz o seguinte:

Se A e B são matrizes quadradas de ordem n, então \det (A \cdot B) = \det A \cdot \det B.

Assim, vamos resolver uma dúvida enviada para mim:

Q é uma matriz 4 \times 4 tal que \det(Q) < 0 e Q^4 + 2Q^2 = 0, então temos:

a) \det Q = -2

b) \det Q = -4

c) \det Q = -8

d) \det Q = -16

Enviada por Laura Helena

Considerando que 0 representa a matriz nula quadrada de ordem 4, podemos escrever:

Q^4 = -2Q^2

Como duas matrizes iguais têm determinantes iguais (a recíproca não é verdadeira!), faremos:

\det(Q^4) = \det(-2Q^2)

Aqui precisamos abrir parênteses; sabemos de outra propriedade importante dos determinantes. Se k \in \mathbb{R} e A é matriz quadrada de ordem n, temos:

\det(kA) = k^n \cdot \det A

Daí, podemos voltar e aplicar o Teorema de Binet na dúvida da Laura:

(\det Q)^4 = (-2)^4 \cdot (\det Q)^2

Como, do enunciado, \det Q < 0, podemos dividir a expressão toda por \det Q:

(\det Q)^2 = 16 \Rightarrow \det Q = \pm \sqrt{16} \Rightarrow \det Q = \pm 4

Usando de novo a restrição do enunciado, encontramos \det Q = -4.

Opção B.

Pra fechar, vou deixar dois vídeos sobre isso. O primeiro que gravei em 2016, falando disso e um mais recente de 2020.

Gravado em 2016, durante uma parceria com um curso preparatório da Ilha do Governador — RJ.
Gravado recentemente, em 2020. Resolvendo um exercício!

Para saber um pouco mais sobre quem foi Binet, clique aqui.

Tomara que isto ajude a sanar a dúvida.

Grande abraço.

Minha iniciativa é GRATUITA.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer AJUDA é bem vinda!

E a melhor ajuda que você pode é DE GRAÇA, GRÁTIS, 0800: só basta DIVULGAR esta iniciativa PRA QUEM PRECISA!

Até!

[LSB]

Uma Dúvida Interessante Sobre Conjunto-Solução

Olá pessoal, há algum tempo, recebi este comentário aqui no site. Como um dos vídeos mais vistos em nosso canal no Youtube (veja ele aqui ou no final desta postagem!) trata deste assunto, resolvi resolver e comentar um pouco sobre isto.

A dúvida é da Helena e diz o seguinte:

Se a equação X^4 - KX^2 = 0 tem solução S = \{-9;0;9\}, então:
a) K=9
b) K=81
c) K=18
d) K=0
e) K= -9

Helena

Inicialmente quero agradecer pela interação com o site, que por muito tempo ficou parado e que agora minha meta é manter funcionando. Bom, vamos lá. Em primeiro lugar, vamos considerar algumas coisas.

(1) Vamos adotar que a equação tem X como incógnita, ou seja, este é o valor que queremos calcular. Isto faz sentido, porque se K fosse a variável, bastaria isolar K, fazendo:

-KX^2 = -X^4 \Rightarrow K = {X^2} \qquad \textrm{para } X \ne 0

Mas, como esta é uma equação literal do primeiro grau na incógnita K, seu conjunto-solução só poderia admitir um único valor. O que contrariaria o enunciado.

(2) O que o enunciado chama de “solução” na realidade é o conjunto-solução S; que é o conjunto cujos elementos solucionam a equação proposta, isto é, são soluções dela. Como S tem mais de um elemento e a equação está na forma de um polinômio, já sabemos que ele não pode ser do primeiro grau, já que pelo Teorema Fundamental da Álgebra uma equação polinomial de grau n tem exatamente n soluções complexas (no conjunto dos números complexos) e no máximo n soluções reais (em \mathbb{R}).

(3) Entendido isso, podemos trabalhar sobre a incógnita como sendo X. Assim, colocando X^2 em evidência, teremos:

X^2 \cdot (X^2 - K) = 0

Para que um produto de dois números seja nulo, é necessário que pelo menos um deles seja zero. Assim, sabemos que X^2 = 0, logo X = 0, caracterizando duas raízes reais e iguais a zero; ou X^2 - K = 0, daí:

X^2 = K \Rightarrow X = +\sqrt{K} \quad \textrm{ou} \quad X = -\sqrt{K}

Ou seja, temos um conjunto solução, que chamaremos de S' representado por S'= \{-\sqrt{K}; 0; +\sqrt{K}\}, que pressupõe necessariamente que K \geq 0.

Como S = S' devemos ter exatamente os mesmos elementos em ambos, ou seja \sqrt{K} = 9. Portanto, para K \geq 0, sabemos que K = 81. Teremos, então a opção B.

Assim, pra fecharmos o assunto, é necessário fazer algumas considerações importantes:

  • Verificar sempre quem é a incógnita da equação;
  • Verificar quem é o conjunto universo no qual se está trabalhando. No osso caso consideramos o conjunto dos números reais \mathbb{R}, mas poderíamos ter os naturais \mathbb{N}, inteiros \mathbb{Z}, complexos \mathbb{C}, etc;
  • É importante entender o papel do conjunto-solução em uma equação; e
  • Cuidado com equações literais.

É isso, espero ter respondido a dúvida da Helena e de outras pessoas, mesmo com um “certo” atraso.

Vídeo sobre conjunto-solução em nosso canal:

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Até!

[LSB]

Tira-Teima #14

Dúvida enviada por Priscila.

(CETF-RJ/2007/Q11) Ao dividirmos o termo de ordem 14 de uma P.A. pelo termo de ordem 5, obteremos 7 por resposta. Ao se dividir o décimo termo dessa seqüência pelo terceiro termo, obteremos o quociente 5 e o resto 3. A soma dos termos da P.G. cuja razão e o primeiro termo são os mesmos da P.A. é:

Solução: Do enunciado sabemos que \frac{a_{14}}{a_5} = 7 e que a_{10} = 5a_3 + 3.

Mas sabemos que a_{14} = a_1 + 13r e que a_5 = a_1 + 4r, então:

\frac{a_1 + 13r}{a_1 + 4r} = 7 \Rightarrow a_1 + 13r = 7a_1 + 28 r

Com isso chegamos a a_1 = -\frac{5r}{2}.

Além disso, a_{10} = a_1 + 9r e a_3 = a1 + 2r. Voltando ao enunciado podemos escrever:

a_1 + 9r = 5a_1 +10r + 3 \Rightarrow -4a_1 = r+ 3

Substituindo o a_1 encontrado:

-4 \cdot (-5) \cdot \frac{r}{2} = r+3

Então r = \frac{1}{3}. E, deste modo,  a_1 = - \frac{5}{6}. Como a soma S dos termos de uma P.G. com razão q tal que \vert q \vert < 1 é S = \frac{a_1}{1-q}, podemos fazer:

S = \frac{-\frac{5}{6}}{1 - \frac{1}{3}} \Rightarrow S = - \frac{5}{4}

Espero ter ajudado.

@LSBar