+ de 90 Exercícios de Geometria

Olá leitores!

Trago pra vocês uma lista com mais de 90 exercícios (com GABARITO) de geometria do Colégio Naval. Aproveite para ver o nível das questões e relembrar conceitos básicos.

Espero que te ajude!

Bons estudos!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Mais uma Lista: Exercícios EsPCEx

Olá leitores!

Fim de terça-feira, passo aqui para deixar uma pequena lista de exercícios de matemática para a EsPCEx. Vai ser assim, pá-pum!

Faz aí, sucesso e boa semana.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Quadrado Mágico: Sistemas e Progressões Aritméticas

Olá, leitores!

Provavelmente você já viu o problema a seguir. A ideia é distribuir os números naturais de 1 a 9 no quadrado 3 \times 3 a seguir, substituindo as letras de a a i, de modo que a soma em cada linha, coluna ou diagonal seja sempre a mesma.

\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}

Antes de começar a tentar resolver, há algumas coisas a se perceber. Vamos lá!

Em primeiro lugar, não é qualquer conjunto de números que pode ser substituído nas letras. Se a soma de todos os números é S e a soma das três linhas é a mesma, valendo k, teremos:

a + b + c = d + e + f = g + h + i = k

Portanto:

(a + b + c) + (d + e + f) + (g + h + i) = S \Rightarrow 3k = S \Rightarrow k = \frac{S}{3}

O que mostra que, se os números são naturais, S deve ser múltiplo do número de linhas e, em particular, no nosso caso, múltiplo de 3, já que são 3 linhas. Como temos os números de 1 a 9, sabemos que:

1 + 2 + \ldots + 8 + 9 = 45

Que nada mais é que a soma dos 9 termos de uma P.A. de razão 1. Podemos concluir que a soma de cada linha é, portanto, em nosso caso, 15.

Essa é a primeira conexão que faremos com as progressões aritméticas. A segunda vem de uma propriedade. Em qualquer P.A. a soma de termos equidistantes dos extremos é constante. Por exemplo, se dispormos os números de 1 a 9 como segue:

(1,2,3,4,5,6,7,8,9)

Vemos claramente que:

1 + 9 = 2 + 8 = 3 +7 = 4 + 6 = 2 \cdot 5

Preste atenção na última igualdade acima. O termo central, que vale 5, fica duplicado para manter a soma dos termos equidistantes igual a 10. Agora, vamos voltar ao nosso quadrado mágico. O que queremos é dispor os números digamos que “em torno” da letra e, pois veja que, se temos:

a + e + i = d + e + f = g + e + c = b + e + h

Teremos:

a +  i = d + f = g + c = b + h

E, além disso, a + b + c = g + h + i, limitando um pouco mais as possibilidades de escolha.

Dos nove números, há oito listados na sequência de três igualdades anterior. E, agora, nosso trabalho fica reduzido a escrever uma P.A. em que os pares (a,i), (d,f), (g,c) e (b,h) sejam extremos equidistantes da mesma P.A. Como só sobrou a letra e, ela deve ser o termo central da P.A., que já sabemos ser 5. Mas vamos alocar os números para verificar, o que ocorre da seguinte maneira:

(b,i,d,g,e,c,f,a,h) = (1,2,3,4,5,6,7,8,9)

Confira no “quadrado mágico”:

\begin{array}{ccc} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{array}

Mas será que essa é a única maneira de dispor os números? Não! Deixo pra você pensar o por quê, mas deixo uma dica: tente “girar” o quadrado mágico!

Agora, o que o quadrado mágico tem a ver com sistemas lineares? Bom, sabemos que o problema pode ser traduzido em um conjunto de equações envolvendo as letras de a a i e que a soma das linhas vale k = \frac{45}{3}, portanto, podemos montar o seguinte sistema:

\left\{ \begin{array}{r} a + b + c = 15 \\  d + e + f = 15 \\  g + h + i = 15 \\  a + d + g = 15 \\  b + e + h = 15 \\ c + f + i = 15 \\  a + e + i = 15 \\  g + e + c = 15 \\ \end{array} \right.

Como há nove incógnitas e somente oito equações, este sistema terá mais de uma solução (pense se serão infinitas… :)). Perceba que a equação a + b + \ldots + h + i = 45 é uma combinação linear das demais e não uma nova equação.

Agora, “mãos à obra”, como diríamos; queremos calcular e, vamos então isolar as demais em função dela. Da primeira, vamos isolar c, encontrando c = 15 - (a+b) e substituir este resultado nas demais:

\left\{ \begin{array}{r}  d + e + f = 15 \\  g + h + i = 15 \\  a + d + g = 15 \\  b + e + h = 15 \\ 15 - (a+b) + f + i = 15 \\  a + e + i = 15 \\  g + e + 15 - (a+b) = 15 \\ \end{array} \right. \Rightarrow \left\{ \begin{array}{r}  d + e + f = 15 \\  g + h + i = 15 \\  a + d + g = 15 \\  b + e + h = 15 \\  f + i = a + b \\  a + e + i = 15 \\  g + e = a+b \\ \end{array} \right.

Observe a quinta e a sétima equação, elas são meras observações do quadrado mágico. Confira lá. Continuando, vamos isolar d na primeira, obtendo d = 15 - (e + f):

\left\{ \begin{array}{r}   g + h + i = 15 \\  a + 15 - (e + f) + g = 15 \\  b + e + h = 15 \\  f + i = a + b \\  a + e + i = 15 \\  g + e = a+b \\ \end{array} \right. \Rightarrow  \left\{ \begin{array}{r}   g + h + i = 15 \\  a + g = e + f \\  b + e + h = 15 \\  f + i = a + b \\  a + e + i = 15 \\  g + e = a+b \\ \end{array} \right.

Agora, faremos o mesmo para i, escrevendo i = 15 - (g+h):

\left\{ \begin{array}{r}    a + g = e + f \\  b + e + h = 15 \\  f + 15 - (g+h) = a + b \\  a + e + 15 - (g+h) = 15 \\  g + e = a+b \\ \end{array} \right. \Rightarrow \left\{ \begin{array}{r}  a + g = e + f \\  b + e + h = 15 \\  a + b + g + h - f = 15 \\  a + e  = g+h \\  g + e = a+b \\ \end{array} \right.

Vamos agora, isolar a na primeira, obtendo a = e + f - g, (haja paciência…!):

\left\{ \begin{array}{r}  b + e + h = 15 \\  e + f - g + b + g + h - f = 15 \\  e + f - g + e  = g+h \\  g + e = e + f - g +b \\ \end{array} \right. \Rightarrow \left\{ \begin{array}{r}  b + e + h = 15 \\  e  + b  + h = 15 \\  2e  = 2g + h - f \\  2g =  f +b \\ \end{array} \right.

As duas primeiras são iguais, podemos eliminar uma delas:

\left\{ \begin{array}{r}  e  + b  + h = 15 \\  2e  = 2g + h - f \\  2g =  f +b \\ \end{array} \right.

Substituindo a terceira na segunda:

\left\{ \begin{array}{r}  e  + b  + h = 15 \\  2e  = f + b + h - f \\ \end{array} \right. \Rightarrow  \left\{ \begin{array}{r}  e  + b  + h = 15 \\  2e  =  b + h \\ \end{array} \right.

Comparando as duas teremos 3e = 15, portanto, e = 5. Veja que só poderemos, com isso, achar o valor de b+h =10, mas não os valores de b e h individualmente. Isto confirma nossa hipótese inicial de que há mais de uma maneira de “arrumar” os números.

E aí? Curtiu nossa solução? Divulgue!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Sobre o Produto dos Termos de uma P.G.

Olá leitores.

Estou passando aqui rapidamente, neste fim de domingo, para deixar um material que fala sobre as fórmulas que calculam o produto dos termos de uma progressão geométrica.

Você pode baixá-lo aqui:

Deixo aqui também um vídeo falando sobre o assunto:

E também o rascunho de uma apostila sobre progressões geométricas:

Bons estudos!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Um Sistema Simples

Olá leitores, recebi uma dúvida há pouco, que envolve sistemas lineares. Vamos dar uma olhada.

Calcule a soma x + y + z no sistema abaixo:

\left\{\begin{array}{lll} 66x + 33y + 2z = 1 \\ 2x + 66y + 33z = 2 \\ 33x + 2y + 66 z = 98 \\ \end{array}\right.

Paolla Souza

Bom, em primeiro lugar é necessário saber que, se um sistema é composto de equações lineares, então a equação obtida pela soma das equações do sistema pode substituir qualquer equação do sistema, mantendo o conjunto solução intacto — que é uma aplicação direta do Teorema de Jacobi em uma matriz.

Daí, como só queremos x + y + z e não os valores individuais, só precisamos somar as três equações e teremos:

66x + 2x + 33x + 33y + 66y + 2y + 2z + 33z + 66z = 1 + 2 + 98

Portanto:

101 x + 101 y + 101 z = 101 \Rightarrow x + y + z = 1

Viu, basta uma boa ideia para resolver rápido. Mas claro, embora não tenhamos feito isso, você pode resolver o sistema, encontrando os valores das incógnitas e depois calcular a soma resultante de seus valores. Vá em frente!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Mais de 500 Exercícios da EEAr!

Olá leitores,

por mais que eu já tenha falado aqui, vou reforçar: nunca paramos de desenvolver materiais. E vamos, a partir de agora, continuar trazendo, porém de forma mais incisiva e intensa, ou seja, muito mais materiais. Este é apenas um deles.

Neste material, você encontra mais de 500 questões de matemática da EEAr, quase todas com gabarito! Prometo que, em breve, colocaremos mais e mais questões, até que todas as questões de 2000 a 2021 estejam neste material, com gabarito. Logo essa é uma versão provisória, mas que você já pode ir usando. Clique abaixo e divirta-se:

Espero, de verdade, que isto te ajude a alcançar seus objetivos!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE: https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Até!

[LSB]

Anúncios

Um Simulado Modelo EEAr

Olá leitores,

segue um pequeno simulado de matemática no nível da EEAr. Depois de fazerem as questões, podem dar uma olhada no gabarito das questões no arquivo deixado aqui.

Para fazer o simulado clique no link a seguir:

SIMULADO 1 — EEAr

Como disse, depois que fizer, veja as questões a seguir e seus gabaritos:

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE: https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Até!

[LSB]

Coloque seu e-mail abaixo para ser avisado de novas postagens:

Anúncios

150 Exercícios de Matemática!

Olá leitores.

Se você sempre vem aqui ao site, já deve ter percebido que ele está mais movimentado e, de fato estamos em uma nova fase.

E, continuando esta nova empreitada, quero deixar aqui uma lista de exercícios com 150 exercícios de matemática de assuntos diversos, pra você se divertir ao longo desta semana.

Sem firulas e demoras segue a lista.

Aproveite então. Estude e mande suas dúvidas e, conforme forem chegando, vamos colocando resolvidas aqui como já fizemos para outros parceiros.

Bons estudos.

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE: https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Até!

[LSB]

Matrizes, Fatoração e Polinômios

Olá pessoal, estou de volta com uma questão da UNIRIO, trazida como dúvida pra mim, que envolve matrizes inversíveis e fatoração de polinômios. O problema segue abaixo:

(UNIRIO) Para que valor(es) real(is) de x a matriz \left[\begin{array}{ccc} 1 & x - 3 & 4 \\ 3 & 0 & -x \\ -2x & 4 & -8 \\ \end{array} \right] é inversível?

Enviada por Beatriz Marcondes

Sabemos que uma matriz tem inversa se, e somente se, seu determinante é diferente de zero. Daí podemos calcular o determinante pela regra de Sarrus:

0 + 48 + 2x^2(x-3) - 0 + 4x + 24(x-3) \ne 0

Desenvolvendo e agrupando os termos semelhantes:

2x^3 - 6x^2 + 28x - 24 \ne 0

Como todos os coeficientes são pares podemos dividir toda a equação por 2:

x^3 - 3x^2 + 14x - 12 \ne 0

Agora vem o problema. Quem são as raízes deste polinômio. Neste caso, é fácil! Perceba que a soma dos coeficientes do polinômio é zero: 1 + (-3) + 14 + (-12) = 0, isto nos garante que 1 é uma das raízes deste polinômio. Para confirmar este fato, basta subistituir a incógnita por 1:

1^3 - 3 \cdot 1^2 + 14 \cdot 1 - 12 = 0

A recíproca do Teorema de D’Alembert garante que, se x = a é raiz de um polinômio P(x), então P(x) é divisível por x-a, isto é, P(x) é da forma P(x) = (x-a) \cdot P_1(x). Dito isso, vamos fatorar P(x) (sim, eu sei, poderíamos usar Briot-Ruffini). Vamos lá:

x^3 - 3x^2 + 14x - 12 \ne 0 \Rightarrow x^3 - x^2 - 2x^2 + 2x + 12x - 12 \ne 0

Assim:

x^2(x - 1) -2x (x-1) + 12(x - 1) \ne 0 \Rightarrow (x-1)(x^2 - 2x + 12) \ne 0

Só precisamos agora ver quais são as raízes do outro fator do produto acima: x^2 - 2x + 12 \ne 0. Calculando o discriminante teremos \Delta = (-2)^2 - 4 \cdot 1 \cdot 12 = -44 < 0, logo não há raízes reais, significando que este fator nunca é zero. Portanto, o único valor que torna o determinante nulo é x = 1. Logo, para a matriz ser inversível devemos ter x \ne 1.

Espero ter ajudado.

Vou deixar um vídeo sobre o teorema de D’Alembert:

Minha iniciativa é GRATUITA.

Você pode AJUDAR doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Produto de Matrizes e Matriz Inversa

Hoje, trazemos um problema que envolve o produto de matrizes e a obtenção da matriz inversa de uma matriz quadrada.

Vejamos o problema proposto:

Considere as matrizes M = \left( \begin{array}{rrr} 1 & -1 & 3 \\ 0 & 1 & 0 \\ 2 & 3 & 1 \\ \end{array} \right), N = \left( \begin{array}{rrr} 1 & 0 & 2 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \\ \end{array} \right), P = \left( \begin{array}{r} 0 \\ 1 \\ 0 \\ \end{array} \right) e X = \left( \begin{array}{r} x \\ y \\ z \\ \end{array} \right). Se X é solução de M^{-1}NX = P, então x^2 + y^2 + z^2 é igual a:

a) 35

b) 17

c) 38

d) 14

e) 29

Enviada por Marcus Tavares

Primeiro, vamos usar a definição de matriz inversa sobre a expressão dada, multiplicando-a pela esquerda por M:

M^{-1}NX = P \Rightarrow M \cdot M^{-1}NX = MP \Rightarrow INX = MP \Rightarrow NX = MP

Em que I representa a identidade de ordem 3. Repetindo o processo, multiplicando a mesma expressão por N^{-1} pela esquerda, teremos:

N^{-1}NX =N^{-1}MP \Rightarrow IX = N^{-1}MP \Rightarrow X = N^{-1}MP

Precisaremos inverter a matriz N (infelizmente, pois vai dar trabalho… :(, mas VQV). Para inverter N faremos:

N \cdot N^{-1} = I_3 \Rightarrow \left(\begin{array}{rrr} 1 & 0 & 2 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \\ \end{array}\right) \cdot \left(\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \\ \end{array}\right) = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right)

Isto vai gerar alguns sistemas de equações, vamos ao primeiro:

\left\{ \begin{array}{r} a + 2g = 1 \\ 3a + 2d = 0 \\  a + d + g = 0 \end{array}\right.

Da primeira equação teremos a = 1 -2g; substituindo na segunda: 3 \cdot (1-2g) + 2d = 0, portanto, d = \frac{6g - 3}{2}. Indo para a terceira:

1 - 2g +  \frac{6g - 3}{2} + g = 0 \Rightarrow 2 - 4g + 6g - 3 + 2g = 0 \Rightarrow g = \frac{1}{4}

Agora calculamos d:

d = \frac{6 \cdot \frac{1}{4} - 3}{2} \Rightarrow d = -\frac{3}{4}

E para o valor de a, sabemos a = \frac{1}{2}. Vamos agora para o segundo sistema:

\left\{ \begin{array}{r} b + 2h = 0 \\ 3b + 2e = 1 \\  b + e + h = 0 \end{array}\right.

Veja que a matriz dos coeficientes é a mesma, mudando apenas as incógnitas. Houve também uma pequena mudança na matriz dos termos independentes. Continuando; da primeira equação, encontramos b = -2h e, substituindo na terceira:

-2h + e + h = 0 \Rightarrow e = h

Colocando estes resultados na segunda:

3 \cdot(-2h) + 2h = 1 \Rightarrow h = -\frac{1}{4}

Portanto temos b = \frac{1}{2} e e = -\frac{1}{4}. Finalmente, vamos ao terceiro sistema de equações:

\left\{ \begin{array}{r} c + 2i = 0 \\ 3c + 2f = 0 \\  c + f + i = 1 \end{array}\right.

Da primeira equação obtemos c = -2i, usando na segunda, teremos:

3 \cdot (-2i) + 2f = 0 \Rightarrow f = 3i

Indo pra última equação:

-2i + 3i + i = 1 \Rightarrow i = \frac{1}{2}

Portanto, f = \frac{3}{2} e c = -1. Então, finalmente temos a inversa de N:

N^{-1} = \left[ \begin{array}{rrr} \frac{1}{2} & \frac{1}{2} & -1 \vspace{1 mm} \\ -\frac{3}{4} & -\frac{1}{4} & \frac{3}{2} \vspace{1 mm} \\ \frac{1}{4} & - \frac{1}{4} & \frac{1}{2} \\ \end{array} \right]

Queremos calcular X = N^{-1}MP que pode ser feito como X = N^{-1}(MP), logo temos MP = \left[ \begin{array}{r} -1 \\ 1 \\ 3 \\ \end{array}\right], e agora teremos a inversa de N multiplicada pelo resultado anterior, que nos dará X = \left[ \begin{array}{r} -\frac{1}{2} + \frac{1}{2} -3 \vspace{1 mm} \\  \frac{3}{4} -\frac{1}{4} + \frac{9}{2} \vspace{1 mm} \\ -\frac{1}{4} - \frac{1}{4} + \frac{3}{2}  \\ \end{array}\right].

Finalmente, podemos escrever: X = \left[ \begin{array}{r} -3 \\ 5 \\ 1 \end{array}\right]. Portanto x = -3, y = 5 e z = 1, daí x^2 + y^2 + z^2 = 9 + 25 + 1 = 35. Opção A.

Problema trabalhoso, mas bacana, gostei!

Fique com um vídeo sobre equações matriciais.

Minha iniciativa é GRATUITA.

Você pode AJUDAR doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]