Aplicação da Identidade de Polinômios

Olá leitor!

Hoje trazemos uma questão que serve pra exemplificar a identidade de polinômios. Vamos lembrar que dois polinômios se tem exatamente os mesmos coeficientes para os mesmos termos. Isto é:

P_1(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0

É idêntico a

P_2(x) = b_nx^n + b_{n-1}x^{n-1} + \ldots + b_1x + b_0

Somente se a_n = b_n, a_{n-1} = b_{n-1}, \ldots, a_0 = b_0. Assim, queremos resolver o seguinte problema:

Determinar a condição necessária e suficiente para que a expressão \frac{a_1x^2 + b_1x+c_1}{a_2x^2+b_2x+c_2}, em que a_1,b_1,c_1,a_2,b_2,c_2 são reais e não nulos, assuma um valor que não dependa de x.

Enviado por Paolla Souza

Se a expressão não depende de x, ela sempre assume um valor k \in \mathbb{R} para qualquer x \in \mathbb{R}. Assim, teremos:

\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2} = k

E, portanto:

a_1x^2 + b_1x + c_1 = ka_2x^2 + kb_2x + k_2c_2

Ou seja, da identidade de polinômios:

a_1 = ka_2, b_1 = kb_2 e c_1 = kc_2

Fica claro que:

\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k

Por exemplo, veja só:

Seja k = 2 e, vamos escolher os coeficientes: \frac{2x^2 + 4x + 2}{x^2+ 2x +1} = 2 para todo x \in \mathbb{R} - \{-1\}, porque -1 é raiz do denominador, obviamente.

Espero ter ajudado.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Sobre Trinômios Quadrados Perfeitos

Olá leitor.

Hoje, trago uma dúvida essencialmente simples que depende, de forma elementar, da identidade entre dois polinômios. Vamos lá:

Qual a condição para que ax^2 + bx + c seja um quadrado perfeito?

Enviado por Paolla Souza

Como queremos que o trinômio seja um quadrado perfeito, basta pensar da seguinte maneira:

ax^2 + bx + c \equiv (mx+n)^2

Veja que essa é a condição mais geral que podemos ter, partindo do desenvolvimento de um binômio. Deste modo:

ax^2 + bx + c \equiv m^2x^2 + 2mnx + n^2

Teremos o seguinte sistema:

\left\{ \begin{array}{l} a = m^2 \\ b = 2 mn \\ c = n^2 \\ \end{array} \right.

Da segunda equação, veja que b^2 = 4m^2n^2, portanto, b = 4ac. Daí vemos que uma condição simples é b = 0 com, por exemplo, c = 0, mas implicando não termos um trinômio propriamente dito, mas um monômio…

Continuando a análise, é possível verificar que, tanto a quanto c, se não nulos, devem ser positivos, pois sendo reais, são os quadrados de m e n respectivamente.

Podemos tirar a prova real, veja que a  x^2 \pm 2\sqrt{ac} x + c  \equiv (\sqrt{a}x \pm \sqrt{c} )^2, com as condições vistas anteriormente. Assim, como vimos, a condição é que se tenha a \cdot c \ne 0, a,c > 0 e b^2 = 4ac, com a,b,c \in \mathbb{R}.

Espero ter ajudado e até!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Qual a posição do número?

Olá leitor!

Hoje trazemos mais uma questão trazida por uma leitora. Vamos ao enunciado:

Formados e dispostos em ordem crescente, os números que se obtém, permutando-se os algarismos 2, 3, 4, 8 e 9, que lugar ocupa o número 43892?

Stephanie Wenceslau

Bom, esta é uma mera questão de permutações simples em que, uma organização do raciocínio resolve o problema. Veja que, temos cinco posições para preencher com cinco algarismos. Como eles devem estar em ordem crescente:

  • Se o primeiro algarismo for o 2 ou o 3, não importam os demais, sempre teremos um número menor que 43892. Então temos um total de 2 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 48 números.
  • Se o primeiro algarismo for o 4 e o seguinte for o 2, não importam os demais, sempre teremos um número menor que 43892. Então temos um total de 1 \cdot 1 \cdot 3 \cdot 2 \cdot 1 = 6 números.
  • Se o primeiro algarismo for o 4 e o seguinte for o 3, o próximo deve ser o 2 e não importam os demais, pois sempre teremos um número menor que 43892. Então temos um total de 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 2 números.
  • Se o primeiro algarismo for o 4, o segundo for o 3 e o terceiro for o 8 o próximo deve ser o 2 e o último o 9, havendo apenas uma possibilidade.

Até aqui temos 48 + 6 + 2 + 1 = 57 números. Portanto, o próximo número é o 58\textsuperscript{\d o}.

Espero ter ajudado!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

AFA: Números Binomiais em P.A.

Sejam bem vindos!

Mais uma dúvida trazida por um leitor e, hoje, envolvendo os números binomiais e as progressões aritméticas, vulgarmente conhecidas como P.A.’s. Então vamos ao enunciado:

(AFA) Os coeficientes do quinto, sexto e sétimo termos do desenvolvimento de (1+x)^n estão em progressão aritmética. Se n \leq 13, então o valor de 2n + 1 é:

a) 7

b) 13

c) 15

d) 27

Enviado por Arthur Pereira

Vamos lembrar que o termo geral do desenvolvimento do binômio (x+a)^n é:

T_{p+1} = {n \choose p} x^{n - p} a^p

No nosso caso x = 1 e a = x. Assim, temos para o quinto termo ficamos com:

T_5 = {n \choose 4} 1^{n - 4} x^4

Para o sexto e o sétimo, respectivamente:

T_6 = {n \choose 5} 1^{n - 5} x^5

E

T_7 = {n \choose 6} 1^{n - 6} x^6

Então, {n \choose 4}, {n \choose 5} e {n \choose 6} formam a nossa P.A, nesta ordem. Portanto, sabemos que existe a relação:

2{n \choose 5} = {n \choose 4} + {n \choose 6}

Desenvolvendo cada número binomial, podemos escrever:

2 \cdot \frac{n!}{5!(n-5)!} = \frac{n!}{4!(n-4)!} + \frac{n!}{6!(n-6)!}

Então:

2 \cdot \frac{n!}{5 \cdot 4!(n-5)(n-6)!} = \frac{n!}{4!(n-4)(n-5)(n-6)!} + \frac{n!}{6 \cdot 5 \cdot 4!(n-6)!}

Dividindo todas as parcelas por \frac{n!}{4!(n-6)!} teremos a seguinte expressão:

\frac{2}{5(n-5)} = \frac{1}{(n-4)(n-5)} + \frac{1}{30}

Fazendo o mínimo múltiplo comum:

\frac{12(n-4)}{30(n-4)(n-5)} = \frac{30}{30(n-4)(n-5)} + \frac{(n-4)(n-5)}{30(n-4)(n-5)}

Desenvolvendo:

12n - 48 = 30 + n^2 - 9n + 20

Finalmente chegamos à n^2 - 21n + 98 = 0, cujas raízes são n = 14 e n = 7. Do enunciado sabemos que n \leq 13, portanto, n = 7. Como queremos 2n + 1, sabemos que o resultado final é 15. Opção C.

Como observação adicional, vale perceber que se tivéssemos simplesmente desenvolvido o triângulo de Pascal até a linha 7, chegaríamos ao mesmo resultado por observação.

É isso.

Até

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

AFA: Análise Combinatória

Olá pessoal!

Mais uma dúvida enviada. Desta vez uma questão da AFA sobre análise combinatória. Vamos ver o enunciado:

(AFA) Cinco rapazes e cinco moças devem posar para uma fotografia, ocupando cinco degraus de uma escadaria, com um casal em cada degrau. De quantas maneiras diferentes podemos arrumar este grupo?

a) 1280

b) 70400

c) 332000

d) 460800

Enviada por Stephanie Wenceslau

Bom, podemos pensar em cada lugar como sendo uma posição que pode ser ocupada por cada uma das 10 pessoas. Assim o primeiro degrau tem 2 posições, o segundo também e, assim por diante. Uma configuração possível é H_1M_1H_2M_2H_3M_3H_4M_4H_5M_5, em que H_n representa um dos homens ; M_n, uma das mulheres. Como temos cinco homens e cinco mulheres, teremos inicialmente o seguinte:

5 \cdot 5 \cdot 4 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 = 5! \cdot 5! = 120 \cdot 120 = 14400 maneiras

Este é o total de maneiras de colocar casais nos degraus, mas sem ordená-los entre si. Veja que, por exemplo, só estamos considerando que, no primeiro degrau, bem como nos demais, o homem vem antes da mulher. Então, como podemos inverter em cada degrau o homem e a mulher de posição, teremos ainda duas maneiras para cada, totalizando, para cada uma das 14400 maneiras, um total de 2 \cdot 2  \cdot 2  \cdot 2  \cdot 2 = 32 modificações. Finalmente, o total geral é 14400 \cdot 32 = 460800 maneiras. Opção D.

Espero ter esclarecido.

Bons estudos!

Até!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Análise Combinatória e Múltiplos de 3

Olá, leitores!

Hoje trazemos uma dúvida trazida por uma de nossas leitoras. Segue o enunciado:

Calcule quantos múltiplos de 3, de 4 algarismos distintos, podem ser formados com 2, 3, 4, 6 e 9.

Stephanie Wenceslau

Bom, em primeiro lugar, para que um número qualquer, seja ele de 4 algarismos distintos ou não, seja múltiplo de 3 a soma de seus algarismos deve ser um número divisível por 3. Vamos separar, então em casos diferentes:

  1. Se o número é composto apenas por algarismos múltiplos de 3, certamente ele é múltiplo de 3. Para este caso, não há possibilidades, pois os algarismos devem ser distintos e só há 3 múltiplos de 3. Basta ver que temos 3 \cdot 2 \cdot 1 \cdot 0 = 0 números.
  2. Como são cinco números disponíveis e usaremos quatro deles, já sabendo que não podem ser três múltiplos de 3 , teremos as seguintes possibilidades:
    1. Não usar o algarismo 3, daí a soma dos restantes é 2 + 4 + 6 + 9 = 21, sendo múltiplo de 3. Serão 4! = 24 números.
    2. Não usar o algarismo 6, daí a soma dos restantes é 2 + 3 + 4 + 9 = 18, sendo múltiplo de 3. Serão 4! = 24 números.
    3. Não usar o algarismo 9, daí a soma dos restantes é 2 + 3 + 4 + 6 = 15, sendo múltiplo de 3. Serão 4! = 24 números.
  3. Veja que não há como usar apenas um algarismo múltiplo de 3, pois há três algarismos múltiplos de 3 dentre cinco e usaremos quatro deles.

Assim temos um total de 24 + 24 + 24 =  72 números.

Pensando em outra abordagem, podemos ver o seguinte: a soma de todos os algarismos é 2 + 3 + 4 + 6 + 9 = 24. Como a soma total já é múltipla de 3, para termos uma soma total, usando apenas 4 algarismos, também múltipla de 3, só poderemos retirar um múltiplo de 3 dentre os existentes. Portanto, escolhemos primeiro um dos três múltiplos de 3 para retirar, sendo {3 \choose 1} = 3 maneiras e, os 4 algarismos restantes, formam o número de 4! maneiras possíveis. Daí, para cada algarismo retirado (que são 3 opções) temos esse total de permutações dos algarismos restantes, ou seja, 3 \times 4! = 72 números possíveis.

Espero ter respondido!

Até.

[LSB]

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Desenvolvimento de um Binômio

Olá leitores!

Trazemos uma dúvida envia por uma leitora. A dúvida segue, e também sua resolução. Vamos lá:

Calcule o termo em x^8 no desenvolvimento (x^2 + \frac{1}{x})^{10}.

Enviada por Stephanie Wenceslau.

Bom, sabemos que o termo geral do desenvolvimento de um binômio de Newton é dado por T_{p+1} = {n \choose p} \cdot x^{n-p} \cdot a^p. Assim, nosso termo geral será da forma:

T_{p+1} = {10 \choose p} \cdot (x^2)^{10 - p} \cdot (\frac{1}{x})^p

Então:

T_{p+1} = {10 \choose p} \cdot x^{2(10 - p)} \cdot (x)^{(-p)} \Rightarrow T_{p+1} = {10 \choose p} \cdot x^{2(10 - p) - p}

Como queremos x^8, teremos 2(10-p) - p = 8, finalmente 20 - 3p = 8, logo p = 4. Assim, o termo procurado é o quinto termo. Teremos:

T_5 = {10 \choose 4} \cdot x^8

O número binomial é {10 \choose 4} = \frac{10!}{4! \cdot 6!} = \frac{10 \cdot 9 \cdot  8 \cdot  7 \cdot  6!}{4! \cdot 6!} = 210. Assim, o termo procurado é T_5 = 210x^8.

Bons estudos!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Números Binomiais

Olá, leitores!

estamos de volta. Desta vez, vamos resolver dois problemas envolvendo números binomiais. Só pra lembrar, um número binomial é definido como {n \choose p} = \frac{n!}{p!(n-p)!}, com p \leq n e n,p \in \mathbb{N} em que o símbolo n! é o fatorial do número n. Vamos lá:

Calcular:

2 \cdot {n \choose 2} - {n+1 \choose 2} = 9

Enviado por Stephanie Wenceslau

Desenvolvendo, de acordo com a definição:

2 \cdot \frac{n!}{2!(n-2)!} - \frac{(n+1)!}{2!(n+1-2)!} = 9

Daí:

2 \cdot \frac{n \cdot (n-1) \cdot (n-2)!}{2 \cdot (n-2)!} - \frac{(n+1) \cdot n \cdot (n-1)!}{2 \cdot (n-1)!} = 9

Simplificando:

n \cdot (n-1) - \frac{(n+1) \cdot n }{2} = 9

Continuando:

n^2 - n - \frac{n^2+n}{2} = 9 \Rightarrow 2n^2 - 2n - n^2 - n = 18

Finalmente teremos n^2 -3n - 18 = 0. As raízes são n_1 = 6 e n_2 = -3. Como n \in \mathbb{N} teremos n = 6.

Calcular:

{n+3 \choose n} = 56

Enviado por Stephanie Wenceslau

Vamos lá, desenvolvendo:

\frac{(n+3)!}{n!(n+3-n)!} = 56

Teremos:

\frac{(n+3) \cdot (n+2) \cdot (n+1) \cdot n!}{n! \cdot 3!} = 56

Cancelando os devidos termos:

\frac{(n+3) \cdot (n+2) \cdot (n+1)}{6} = 56 \Rightarrow (n+3)(n+2)(n+1) = 6 \cdot 56 = 6 \cdot 7 \cdot 8

Veja que, por mera observação, ja que n \in \mathbb{N} temos n = 5.

E aí? O que achou?

Até a próxima!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

44 Exercícios Gerais da AFA

Olá leitores!

Pra esquentar sua semana, trago uma lista de 44 exercícios de matemática da AFA de diversos assuntos: trigonometria em geral, incluindo equações e inequações trigonométricas, logaritmos e exponenciais, além de funções e outros assuntos.

Segue a lista:

A lista está toda com gabarito. Se aparecer um exercício com gabarito com “X” na opção, significa que não encontramos gabarito e não conseguimos comparar com outras provas pra ter referência pra corrigir.

Bons estudos!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Alguns Bons Exercícios para a EEAr!

Olá leitores!

Segue uma pequena lista com sete exercícios de matemática de assuntos diversos, criados por mim, para simular questões da EEAr.

São poucos exercícios, mas são interessantes. Pode confiar.

Bons estudos!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]