Conjuntos, Múltiplos e Primos na Escola Naval

Olá leitor,

trazemos uma questão da prova de 2019/2020 da Escola Naval com um enunciado nem tão bem escrito assim, mas que tem uma abordagem interessante sobre a teoria de conjuntos. Vamos lá:

(Escola Naval) Seja W o conjunto dos números múltiplos de 2 ou P, em que P é um primo ímpar. Sabendo que \frac{3}{5} de W, que são múltiplos de P, são ímpares; \frac{2}{5} de W são ímpares; e 77 elementos de W não são múltiplos de 2P, pode-se afirmar que a quantidade de elementos de W que são ímpares é um número múltiplo de:

a) 4

b) 5

c) 7

d) 9

e) 11

Enviado por Marcus Tavares

Bom, em primeiro lugar, o enunciado já traz uma inadequação (pra não dizer equívoco) no início, uma vez que os múltiplos de 2 ou P são infinitos. Assim, deveria vir escrito que W é conjunto finito. Mas deixando isto de lado considere a figura a seguir:

Vamos considerar que M_P é o conjunto dos múltiplos de P e que M_2 é o conjunto dos múltiplos de 2.

Desse modo:

  • a serão os múltiplos de 2 que não são múltiplos de P;
  • b serão os múltiplos de 2 que também são múltiplos de P, ou seja, como P também é primo, serão os múltiplos de 2P; e
  • c serão os múltiplos de P que não são múltiplos de 2; portanto, correspondem aos múltiplos ímpares de P.

Chamando o total de elementos de x, do enunciado, tiramos as seguintes informações:

\left\{ \begin{array}{l} a+b+c = x \\ c = \frac{2}{5} x \\ c + a = 77 \\ \frac{3}{5}(c + b) = c \\ \end{array} \right.

Um comentário meu: com relação à última linha do sistema anterior, acho que o enunciado foi muito mal escrito, bastava dizer “dos múltiplos de P, \frac{3}{5} são ímpares”. Mas enfim, teremos, da última linha:

3c + 3b = 5c \Rightarrow b = \frac{2}{3} c

Da segunda linha, escrevemos: b = \frac{2}{3} \cdot \frac{2}{5}  \cdot x = \frac{4}{15} x e da terceira linha:

\frac{2}{5} x + a = 77 \Rightarrow a = 77 - \frac{2}{5} x

Agora, todas as variáveis estão em função de x, voltando à primeira linha do sistema:

a + b + c = x \Rightarrow 77 - \frac{2}{5} x + \frac{4}{15} x + \frac{2}{5} x = x

Então:

\frac{11}{15} x = 77 \Rightarrow x = 105

Como queremos apenas os valores ímpares, poderíamos simplesmente dizer: “infinitos”, mas lembre-se que o enunciado foi mal escrito (ou de má vontade ou ambos) e queremos o valor de c neste caso. Assim c = \frac{2}{5} \cdot 105 = 42 que é múltiplo de 7. Opção C.

Até mais!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Probabilidade e M.D.C na Escola Naval

Olá leitor,

a prova da Escola Naval de 2020/2021 trouxe uma questão que envolve o M.D.C de dois números e uma pergunta sobre probabilidade. Segue a questão:

(EN) Escolhendo aleatoriamente um número do conjunto \{1;2;3;\ldots;2020\}, qual a probabilidade de que o número escolhido e 2020 sejam primos entre si?

a) \frac{40}{101}

b) \frac{153}{1010}

c) \frac{293}{1010}

d) \frac{401}{1010}

e) \frac{76}{505}

Enviada por Stephanie Wenceslau

Bom, primeiro, precisamos saber o que são números primos entre si ou ainda mutuamente primos. Dizemos que dois números naturais a e b são primos entre si, se \textrm{mdc} (a,b) = 1. O m.d.c. entre dois números naturais vale 1 se eles não possuem fatores comuns em sua fatoração em primos. Por exemplo, 9 e 16 são primos entre si, pois veja que 9 = 3^2 e 16 = 2^4.

É possível ver que dois números pares nunca são primos entre si, pois ambos são divisíveis por 2; e, que dois números primos também sempre são primos entre si, por conta da própria definição de números naturais primos.

Assim, fatorando 2020, encontramos 2020 = 2^2 \cdot 5 \cdot 101. Ou seja, todos os múltiplos de 2, 5 ou 101 não serão primos com 2020, pois haverá fatores comuns em suas fatorações, tornando o m.d.c entre eles maior que 1.

Vamos contar então, primeiramente, os múltiplos de 2. Eles são em número M(2) = 1010. Para 5, temos M(5) = 404. Finalmente, para 101, ficamos com M(101) = 20.

Agora, ao somarmos estes valores, teremos M(2) + M(5) + M(101) = 1010 + 404 + 20 = 1434. Porém, precisamos atentar para o fato de que, estamos contando números repetidos, uma vez que os múltiplos de 10, por exemplo, são múltiplos de 2 e de 5 também; sendo, portanto, recontados. Vamos excluí-los.

Os múltiplos de 2 e de 5 são os múltiplos de 10, e são M(10) = 202. Para os múltiplos de 2 e de 101, teremos M(202) = 10; e, finalmente, os múltiplos de 5 e de 101 são em número total de M(505) = 4. Estes serão excluídos. O total é M(10) + M(202) + M(505) = 202 + 10 + 4 = 216.

Ainda precisamos considerar os múltiplos simultâneos de 2, 5 e 101, que serão os múltiplos de 1010. Estes são excluídos mais de uma vez e precisam ser reincluídos. Então M(1010) = 2.

Finalmente podemos encontrar todos os números naturais que têm fatores comuns com 2020, não sendo primos com 2020. Assim, eles são 1434 - 216 + 2 = 1220 no total. Como são 2020 números no total, temos 2020 - 1220 = 800 números que são primos entre si com 2020. Agora, temos a probabilidade:

P = \frac{800}{2020} = \frac{40}{101}

Opção A.

E aí, gostou.

Siga-me e ajude divulgando.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Um Problema da AFA sobre o Teorema do Resto

Olá leitor.

Recebi uma dúvida hoje sobre o Teorema do Resto em uma questão da AFA. O enunciado segue abaixo:

Se o polinômio

P(x) = x^m - 2b^nx^{m-n} + b^m

é divisível por x+b, sendo m < n, n \in  \mathbb{N} e m \in \mathbb{N}^* e b \ne 0, então ocorrerá necessariamente:

a) m par e n ímpar

b) m ímpar e n par

c) m ímpar e n ímpar

d) m par e n par

Enviada por Milena Figueiredo

Bom, vamos lá.

O teorema do resto diz que “se dividirmos um polinômio P por um polinômio do primeiro grau D(x)  = ax + b, então o resto será R(x) = P(-\frac{b}{a}), em que -\frac{b}{a} é a raiz do divisor”. Assim, do enunciado, sabemos que o divisor é x + b e, portanto, sua raiz é x = -b. Calculando P(-b), teremos P(-b) = R(x) = 0, já que P é divisível por x + b, ou seja, deixa resto igual a zero. Assim:

P(-b) = (-b)^m - 2b^n(-b)^{m-n} + b^m = 0

Como, tanto m quanto n são números naturais, podemos escrever (-b)^m = [(-1) \cdot b]^m = (-1)^m \cdot b^m e substituir na equação:

(-1)^m \cdot b^m - 2b^n \cdot (-1)^{m-n} \cdot b^{m-n} + b^m = 0

Finalmente:

(-1)^m \cdot b^m - 2b^n \cdot (-1)^{m-n} \cdot b^m \cdot b^{-n} + b^m = 0

Colocando b^m em evidência:

b^m[(-1)^m - 2b^n \cdot (-1)^{m-n} \cdot b^{-n} + 1] = 0

Veja que, dentro dos colchetes, teremos b^n \cdot b^{-n} = b^0, que só é possível se b \ne 0, continuando:

b^m[(-1)^m - 2 \cdot (-1)^{m-n} \cdot b^0 + 1] = 0

Agora temos duas opções:

  1. Se b^m = 0, temos b = 0, mas daí teríamos b^0 = 0^0, que não é possível. A segunda opção é…
  2. Termos (-1)^m - 2 \cdot (-1)^{m-n} \cdot b^0 + 1 = 0, com b^0 =1, uma vez que já vimos na opção anterior que b \ne 0.

Desenvolvendo esta segunda opção, ficamos com:

(-1)^m - 2 \cdot (-1)^{m - n} + 1 = 0 \Rightarrow (-1)^m - 2 \cdot \frac{(-1)^m}{(-1)^n} + 1 = 0

Veja que, m sendo ímpar, teremos:

-1 - 2 \cdot \frac{(-1)}{(-1)^n} + 1 = 0 \Rightarrow 2 \cdot \frac{1}{(-1)^n} = 0

Que nunca será nulo, pois \frac{1}{(-1)^n} \ne 0 para qualquer n \in \mathbb{N}. Para m par, teremos:

1 - 2 \cdot \frac{1}{(-1)^n} + 1 = 0 \Rightarrow 2 - 2 \cdot \frac{1}{(-1)^n} = 0 \Rightarrow 2(1 - \frac{1}{(-1)^n}) = 0

Que nos dá 1 - \frac{1}{(-1)^n} = 0, logo (-1)^n = 1, portanto n é par. Assim, chegamos à opção D.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Escola Naval: Sobre Fatorial e Divisores

Olá leitores.

Recebi estes dias uma dúvida que envolve o fatorial de um número e sua divisibilidade por 21. Vamos ver o enunciado e resolver:

(EN) O fatorial de 2020 é divisível por 21^n. O maior valor inteiro de n é:

a) 96

b) 288

c) 334

d) 440

e) 673

Marcus Tavares

Bom, vamos ao que interessa. Para que um número seja divisível por 21 é necessário que ele seja divisível por 3 e por 7. Então vejamos o seguinte: 7! só é divisível por 21^0 e 21^1, pois:

7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1

Assim, fica claro que calculando \frac{7!}{21} teremos um inteiro, pois temos um fator de 7 e, pelo menos, um fator de 3 em 7!. Se continuarmos investigando os fatoriais consecutivos e maiores que 7!, isto não ocorrerá novamente até o 14!, veja:

14! = 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1

Fica explícito que 14! é divisível por 21^2, mas não por 21^3, pois há apenas dois fatores de 7, sendo um no próprio 7 e o outro no 14, embora haja muito mais fatores de 3.

Esse processo continua da mesma maneira até chegarmos ao 49!, pois 49 = 7^2, acrescentando, por sua vez, dois fatores de 7. Chegamos, a partir daí a seguinte conclusão:

  • cada múltiplo de 7 acrescenta um fator de 7;
  • cada múltiplo de 49 = 7^2 acrescentará dois fatores de 7, dos quais um já foi contado nos fatores de 7;
  • cada fator de 343 = 7^3 acrescentará três fatores de 7, dos quais dois já foram contados: um deles nos múltiplos de 7 e o outro nos múltiplo de 49;

Então vamos lá! Vamos calcular quantos múltiplos de 7,49,343,\ldots há de 1 a 2020:

  • Sabemos que 2020 = 7 \cdot 288 + 4, logo há 288 múltiplos de 7 de 1 a 2020;
  • Continuando, temos 2020 = 49 \cdot 41 + 11, portanto, há 41 múltiplos de 49 no mesmo intervalo; e
  • Finalmente, 2020 = 343 \cdot 5 + 305, havendo, então, 5 múltiplos.
  • Não há múltiplos de 7^4, pois 7^4 = 2401 > 2020.

Contando agora teremos:

n = 288 + 41 + 5 = 334 fatores de 7 em 2020!

Veja que, se a pergunta fosse, “quantos são os possíveis valores inteiros de n“, ainda incluiríamos o zero, ficando com 335 valores possíveis, sendo o 334 o maior deles!

Espero ter esclarecido!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Aplicação da Identidade de Polinômios

Olá leitor!

Hoje trazemos uma questão que serve pra exemplificar a identidade de polinômios. Vamos lembrar que dois polinômios se tem exatamente os mesmos coeficientes para os mesmos termos. Isto é:

P_1(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0

É idêntico a

P_2(x) = b_nx^n + b_{n-1}x^{n-1} + \ldots + b_1x + b_0

Somente se a_n = b_n, a_{n-1} = b_{n-1}, \ldots, a_0 = b_0. Assim, queremos resolver o seguinte problema:

Determinar a condição necessária e suficiente para que a expressão \frac{a_1x^2 + b_1x+c_1}{a_2x^2+b_2x+c_2}, em que a_1,b_1,c_1,a_2,b_2,c_2 são reais e não nulos, assuma um valor que não dependa de x.

Enviado por Paolla Souza

Se a expressão não depende de x, ela sempre assume um valor k \in \mathbb{R} para qualquer x \in \mathbb{R}. Assim, teremos:

\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2} = k

E, portanto:

a_1x^2 + b_1x + c_1 = ka_2x^2 + kb_2x + k_2c_2

Ou seja, da identidade de polinômios:

a_1 = ka_2, b_1 = kb_2 e c_1 = kc_2

Fica claro que:

\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k

Por exemplo, veja só:

Seja k = 2 e, vamos escolher os coeficientes: \frac{2x^2 + 4x + 2}{x^2+ 2x +1} = 2 para todo x \in \mathbb{R} - \{-1\}, porque -1 é raiz do denominador, obviamente.

Espero ter ajudado.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Sobre Trinômios Quadrados Perfeitos

Olá leitor.

Hoje, trago uma dúvida essencialmente simples que depende, de forma elementar, da identidade entre dois polinômios. Vamos lá:

Qual a condição para que ax^2 + bx + c seja um quadrado perfeito?

Enviado por Paolla Souza

Como queremos que o trinômio seja um quadrado perfeito, basta pensar da seguinte maneira:

ax^2 + bx + c \equiv (mx+n)^2

Veja que essa é a condição mais geral que podemos ter, partindo do desenvolvimento de um binômio. Deste modo:

ax^2 + bx + c \equiv m^2x^2 + 2mnx + n^2

Teremos o seguinte sistema:

\left\{ \begin{array}{l} a = m^2 \\ b = 2 mn \\ c = n^2 \\ \end{array} \right.

Da segunda equação, veja que b^2 = 4m^2n^2, portanto, b = 4ac. Daí vemos que uma condição simples é b = 0 com, por exemplo, c = 0, mas implicando não termos um trinômio propriamente dito, mas um monômio…

Continuando a análise, é possível verificar que, tanto a quanto c, se não nulos, devem ser positivos, pois sendo reais, são os quadrados de m e n respectivamente.

Podemos tirar a prova real, veja que a  x^2 \pm 2\sqrt{ac} x + c  \equiv (\sqrt{a}x \pm \sqrt{c} )^2, com as condições vistas anteriormente. Assim, como vimos, a condição é que se tenha a \cdot c \ne 0, a,c > 0 e b^2 = 4ac, com a,b,c \in \mathbb{R}.

Espero ter ajudado e até!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Qual a posição do número?

Olá leitor!

Hoje trazemos mais uma questão trazida por uma leitora. Vamos ao enunciado:

Formados e dispostos em ordem crescente, os números que se obtém, permutando-se os algarismos 2, 3, 4, 8 e 9, que lugar ocupa o número 43892?

Stephanie Wenceslau

Bom, esta é uma mera questão de permutações simples em que, uma organização do raciocínio resolve o problema. Veja que, temos cinco posições para preencher com cinco algarismos. Como eles devem estar em ordem crescente:

  • Se o primeiro algarismo for o 2 ou o 3, não importam os demais, sempre teremos um número menor que 43892. Então temos um total de 2 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 48 números.
  • Se o primeiro algarismo for o 4 e o seguinte for o 2, não importam os demais, sempre teremos um número menor que 43892. Então temos um total de 1 \cdot 1 \cdot 3 \cdot 2 \cdot 1 = 6 números.
  • Se o primeiro algarismo for o 4 e o seguinte for o 3, o próximo deve ser o 2 e não importam os demais, pois sempre teremos um número menor que 43892. Então temos um total de 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 2 números.
  • Se o primeiro algarismo for o 4, o segundo for o 3 e o terceiro for o 8 o próximo deve ser o 2 e o último o 9, havendo apenas uma possibilidade.

Até aqui temos 48 + 6 + 2 + 1 = 57 números. Portanto, o próximo número é o 58\textsuperscript{\d o}.

Espero ter ajudado!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

AFA: Números Binomiais em P.A.

Sejam bem vindos!

Mais uma dúvida trazida por um leitor e, hoje, envolvendo os números binomiais e as progressões aritméticas, vulgarmente conhecidas como P.A.’s. Então vamos ao enunciado:

(AFA) Os coeficientes do quinto, sexto e sétimo termos do desenvolvimento de (1+x)^n estão em progressão aritmética. Se n \leq 13, então o valor de 2n + 1 é:

a) 7

b) 13

c) 15

d) 27

Enviado por Arthur Pereira

Vamos lembrar que o termo geral do desenvolvimento do binômio (x+a)^n é:

T_{p+1} = {n \choose p} x^{n - p} a^p

No nosso caso x = 1 e a = x. Assim, temos para o quinto termo ficamos com:

T_5 = {n \choose 4} 1^{n - 4} x^4

Para o sexto e o sétimo, respectivamente:

T_6 = {n \choose 5} 1^{n - 5} x^5

E

T_7 = {n \choose 6} 1^{n - 6} x^6

Então, {n \choose 4}, {n \choose 5} e {n \choose 6} formam a nossa P.A, nesta ordem. Portanto, sabemos que existe a relação:

2{n \choose 5} = {n \choose 4} + {n \choose 6}

Desenvolvendo cada número binomial, podemos escrever:

2 \cdot \frac{n!}{5!(n-5)!} = \frac{n!}{4!(n-4)!} + \frac{n!}{6!(n-6)!}

Então:

2 \cdot \frac{n!}{5 \cdot 4!(n-5)(n-6)!} = \frac{n!}{4!(n-4)(n-5)(n-6)!} + \frac{n!}{6 \cdot 5 \cdot 4!(n-6)!}

Dividindo todas as parcelas por \frac{n!}{4!(n-6)!} teremos a seguinte expressão:

\frac{2}{5(n-5)} = \frac{1}{(n-4)(n-5)} + \frac{1}{30}

Fazendo o mínimo múltiplo comum:

\frac{12(n-4)}{30(n-4)(n-5)} = \frac{30}{30(n-4)(n-5)} + \frac{(n-4)(n-5)}{30(n-4)(n-5)}

Desenvolvendo:

12n - 48 = 30 + n^2 - 9n + 20

Finalmente chegamos à n^2 - 21n + 98 = 0, cujas raízes são n = 14 e n = 7. Do enunciado sabemos que n \leq 13, portanto, n = 7. Como queremos 2n + 1, sabemos que o resultado final é 15. Opção C.

Como observação adicional, vale perceber que se tivéssemos simplesmente desenvolvido o triângulo de Pascal até a linha 7, chegaríamos ao mesmo resultado por observação.

É isso.

Até

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

AFA: Análise Combinatória

Olá pessoal!

Mais uma dúvida enviada. Desta vez uma questão da AFA sobre análise combinatória. Vamos ver o enunciado:

(AFA) Cinco rapazes e cinco moças devem posar para uma fotografia, ocupando cinco degraus de uma escadaria, com um casal em cada degrau. De quantas maneiras diferentes podemos arrumar este grupo?

a) 1280

b) 70400

c) 332000

d) 460800

Enviada por Stephanie Wenceslau

Bom, podemos pensar em cada lugar como sendo uma posição que pode ser ocupada por cada uma das 10 pessoas. Assim o primeiro degrau tem 2 posições, o segundo também e, assim por diante. Uma configuração possível é H_1M_1H_2M_2H_3M_3H_4M_4H_5M_5, em que H_n representa um dos homens ; M_n, uma das mulheres. Como temos cinco homens e cinco mulheres, teremos inicialmente o seguinte:

5 \cdot 5 \cdot 4 \cdot 4 \cdot 3 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1 = 5! \cdot 5! = 120 \cdot 120 = 14400 maneiras

Este é o total de maneiras de colocar casais nos degraus, mas sem ordená-los entre si. Veja que, por exemplo, só estamos considerando que, no primeiro degrau, bem como nos demais, o homem vem antes da mulher. Então, como podemos inverter em cada degrau o homem e a mulher de posição, teremos ainda duas maneiras para cada, totalizando, para cada uma das 14400 maneiras, um total de 2 \cdot 2  \cdot 2  \cdot 2  \cdot 2 = 32 modificações. Finalmente, o total geral é 14400 \cdot 32 = 460800 maneiras. Opção D.

Espero ter esclarecido.

Bons estudos!

Até!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Análise Combinatória e Múltiplos de 3

Olá, leitores!

Hoje trazemos uma dúvida trazida por uma de nossas leitoras. Segue o enunciado:

Calcule quantos múltiplos de 3, de 4 algarismos distintos, podem ser formados com 2, 3, 4, 6 e 9.

Stephanie Wenceslau

Bom, em primeiro lugar, para que um número qualquer, seja ele de 4 algarismos distintos ou não, seja múltiplo de 3 a soma de seus algarismos deve ser um número divisível por 3. Vamos separar, então em casos diferentes:

  1. Se o número é composto apenas por algarismos múltiplos de 3, certamente ele é múltiplo de 3. Para este caso, não há possibilidades, pois os algarismos devem ser distintos e só há 3 múltiplos de 3. Basta ver que temos 3 \cdot 2 \cdot 1 \cdot 0 = 0 números.
  2. Como são cinco números disponíveis e usaremos quatro deles, já sabendo que não podem ser três múltiplos de 3 , teremos as seguintes possibilidades:
    1. Não usar o algarismo 3, daí a soma dos restantes é 2 + 4 + 6 + 9 = 21, sendo múltiplo de 3. Serão 4! = 24 números.
    2. Não usar o algarismo 6, daí a soma dos restantes é 2 + 3 + 4 + 9 = 18, sendo múltiplo de 3. Serão 4! = 24 números.
    3. Não usar o algarismo 9, daí a soma dos restantes é 2 + 3 + 4 + 6 = 15, sendo múltiplo de 3. Serão 4! = 24 números.
  3. Veja que não há como usar apenas um algarismo múltiplo de 3, pois há três algarismos múltiplos de 3 dentre cinco e usaremos quatro deles.

Assim temos um total de 24 + 24 + 24 =  72 números.

Pensando em outra abordagem, podemos ver o seguinte: a soma de todos os algarismos é 2 + 3 + 4 + 6 + 9 = 24. Como a soma total já é múltipla de 3, para termos uma soma total, usando apenas 4 algarismos, também múltipla de 3, só poderemos retirar um múltiplo de 3 dentre os existentes. Portanto, escolhemos primeiro um dos três múltiplos de 3 para retirar, sendo {3 \choose 1} = 3 maneiras e, os 4 algarismos restantes, formam o número de 4! maneiras possíveis. Daí, para cada algarismo retirado (que são 3 opções) temos esse total de permutações dos algarismos restantes, ou seja, 3 \times 4! = 72 números possíveis.

Espero ter respondido!

Até.

[LSB]

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]