EFOMM: 33 Questões de Provas Antigas!

Olá leitor!

Vai fazer prova pra EFOMM este ano? Deixamos 33 questões coletadas de provas antigas da EFOMM pra você!

Bons estudos!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]


Publicidade

EFOMM: Análise Combinatória

Olá leitores!

Hoje trago mais uma duvida enviada por um de nossos leitores. É uma questão da EFOMM, envolvendo análise combinatória ou, um problema de contagem, como gosto atualmente de dizer. O enunciado segue:

(EFOMM) Quantos anagramas é possível formar com a palavra CARAVELAS não havendo duas vogais consecutivas e nem duas consoantes consecutivas?

a) 24

b) 120

c) 480

d) 1920

e) 3840

Enviada por Artur Ardasse

Bom, em primeiro lugar é preciso saber que anagrama é qualquer combinação das letras de uma palavra. Se ela tem n letras, então teremos um total de n! anagramas. Quando há \alpha letras iguais, o total de anagramas é \frac{n!}{\alpha !}. Mas, no nosso problema, as vogais e as consoantes devem se alternar, já que não podem estar juntas.

Assim, se C representa uma das consoantes e V uma das vogais, as palavras serão da forma C_1V_1C_2V_2C_3V_3C_4V_4C_5. Como há mais vogais que consoantes, não há como começar com uma vogal (caso queira, pense no caso da palavra CARAVELA. Neste exemplo, poderíamos começar com vogal ou com consoante.).

Assim, como há 5 consoantes e 4 vogais, teremos 5 \times 4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 1 \times 1 = 5! \cdot 4!. Este é o total de anagramas sem considerar que há três letras “A” repetidas. Precisamos então, descontar estas repetições.

Portanto, nosso total será \frac{5! \cdot 4!}{3!} = \frac{120 \cdot 4 \cdot 3!}{3!} = 480 anagramas. Temos assim a opção C.

Como observação final, pense em como faríamos se o enunciado pedisse anagramas em que temos vogais consecutivas ou consoantes consecutivas. Veja que agora que queremos “OU” e não “E”. Alguma coisa muda? Ou não? Pense nisso!

Até a próxima!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EFOMM e Determinantes

Olá pessoal!

Hoje trago uma duvida sobre uma questão da EFOMM de 2010, enviada pela Laura Helena.

Já fazendo um marketing básico, temos duas provas resolvidas (clique AQUI pra ver) da EFOMM que queremos, em breve, ampliar para mais.

Vamos à dúvida:

(EFOMM) Sejam A, B e C matrizes de ordem 3 \times 3 inversíveis tais que:

\det (A^{-1}) = 3 e \det ((AB)^{-1} + \frac{I}{2}) = 4

Sabendo-se que I é a matriz identidade de ordem 3, tal que I = -3C^{-1}(2B^{-1} + A)^{T}, o determinante de C é igual a:

a) - \frac{8}{3}

b) - \frac{32}{3}

c) -9

d) -54

e) -288

Enviada por Laura Helena

Então vamos lá.

Como queremos o determinante de C e temos uma expressão que relaciona as matrizes A, B e C, vamos começar por aí:

I = -3C^{-1}(2B^{-1} + A)^{T}

Multiplicando ambos os lados pela esquerda por -\frac{1}{3}C teremos:

(-\frac{1}{3}) \cdot C \cdot I = (-\frac{1}{3}) \cdot C \cdot (-3C^{-1}) \cdot (2B^{-1} + A)^{T}

Resultando em:

(-\frac{1}{3}) \cdot C = I \cdot (2B^{-1} + A)^{T}

Continuando e aplicando a transposta de ambos os lados:

[(-\frac{1}{3}) \cdot C]^T = 2B^{-1} + A \Rightarrow 2B^{-1} = [(-\frac{1}{3}) \cdot C]^T - A

Finalmente:

B^{-1} = \frac{1}{2} \cdot [(-\frac{1}{3}) \cdot C]^T - \frac{1}{2} \cdot A \Rightarrow B^{-1} = \frac{1}{2} \cdot (-\frac{1}{3}) \cdot C^T - \frac{1}{2} \cdot A

Pronto. Sabendo que (AB)^{-1} = B^{-1} \cdot A^{-1}, podemos agora trabalhar sobre a expressão dada:

\det((AB)^{-1} + \frac{I}{2}) = 4 \Rightarrow \det (B^{-1} \cdot A^{-1} + \frac{I}{2}) = 4

Da inversa de B que achamos:

\det((\frac{1}{2} \cdot (-\frac{1}{3}) \cdot C^T - \frac{1}{2} \cdot A) \cdot A^{-1} + \frac{I}{2}) = 4 \Rightarrow \det(-\frac{1}{6} \cdot C^T \cdot A^{-1}  - \frac{1}{2} \cdot A \cdot A^{-1} + \frac{I}{2}) = 4

Como A \cdot A^{-1} = I, teremos:

\det(-\frac{1}{6} \cdot C^T \cdot A^{-1}) = 4

Aolicando o Teorema de Binet, clique AQUI para ver o que já falamos disso, e as propriedades envolvendo o determinante da transposta, o determinante de uma matriz multiplicada por um número real e o determinante da inversa, teremos:

(-\frac{1}{6})^3 \cdot \det (C^T) \cdot \det (A^{-1}) = 4

Logo:

-\frac{1}{216} \cdot \det C \cdot 3 = 4 \Rightarrow \det C = -288

Chegando, finalmente (Ufa!) à opção E.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EFOMM: Uma Pequena Lista!

Olá leitores, sem mais demora trago pra vocês uma lista com cerca de 20 exercícios da Escola de Formação de Oficiais da Marinha Mercante, também conhecida como EFOMM.

São exercícios gerais, envolvendo conjuntos, P.A., P.G., matrizes, determinantes, sistemas lineares, geometria (principalmente trigonometria no triângulo), e outros assuntos que podem vir de “coadjuvantes” em algumas questões, se é que você me entende…

Clica no link abaixo pra pegar a lista:

Bons estudos e espero que você seja feliz!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Um Pequeno Simulado Nível AFA

Olá pessoal, hoje trago para vocês um pequeno simulado de matemática próximo ao nível da AFA. São 10 questões em um formulário do Google:

https://forms.gle/GYzevR2qisAqFuHz6

Quando você terminar, clique em enviar e você receberá sua nota no e-mail que usou para responder ao formulário.

Caso tenha dúvida em algum dos problemas (depois de resolver todo o simulado, claro!) convido-o (ou convido-a) a verificar a solução comentada das questões

Espero que seja útil.

Grande abraço e bons estudos!

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Até!

[LSB]

Exercícios: Limites I

Olá alunos,

saindo um pouco da seara do ensino médio, publicamos uma lista de limites (lista 1) relacionada à introdução do conceito de limite. É uma lista básica que atende ao público que está começando a estudar isto para a Escola Naval e EFOMM, além de estudantes de cálculo I.

Vá em matemática >> exercícios e procure pelo arquivo.

Bons estudos, boa semana.

@LSBar – Fundador

Matemática 2009 da EsPCEx: nós resolvemos!

Em casa, nada para fazer… entre um comercial e outro do “Caldeirão do Huck™” nós fomos, aos poucos, solucionando mais uma prova de Matemática: EsPCEx 2009/2010.

Soluções de Questões de Vestibular – Matemática – EsPCEx v1.3

Neste fim de semana está ocorrendo a prova da EFOMM, mas a prova só será divulgada na 3ª dia 10/08. Então, se alguém por obséquio estiver de posse da prova e quiser nos enviar para fazermos o gabarito seria ótimo. Ou esperamos até terça, fazer o quê? Paciência.

Um abraço.

PS.: Votem na nossa enquete no rodapé da página inicial.

Equipe Mentor

Compartilhe:

Sobre a solução da Prova do Colégio Naval 2010

Na ânsia de entregar um gabarito claro e completo, cometemos um equívoco em uma das soluções da prova do Colégio Naval 2010. A resposta final está correta, mas a questão não foi resolvida de maneira correta. Sendo assim, já corrigimos este equívoco e colocamos a solução certa, que você pode conferir no link:

Soluções de Questões de Vestibular – Matemática – PSACN v1.5

Ou indo até a nossa página de Provas e Gabaritos/Matemática.

Neste domingo dia 08/08/2010, ocorre a prova da Escola de Formação de Oficiais da Marinha Mercante – EFOMM de Matemática e Física. Assim que tivermos acesso a prova divulgaremos aqui nosso gabarito.

Equipe Mentor