EFOMM e Determinantes

Olá pessoal!

Hoje trago uma duvida sobre uma questão da EFOMM de 2010, enviada pela Laura Helena.

Já fazendo um marketing básico, temos duas provas resolvidas (clique AQUI pra ver) da EFOMM que queremos, em breve, ampliar para mais.

Vamos à dúvida:

(EFOMM) Sejam A, B e C matrizes de ordem 3 \times 3 inversíveis tais que:

\det (A^{-1}) = 3 e \det ((AB)^{-1} + \frac{I}{2}) = 4

Sabendo-se que I é a matriz identidade de ordem 3, tal que I = -3C^{-1}(2B^{-1} + A)^{T}, o determinante de C é igual a:

a) - \frac{8}{3}

b) - \frac{32}{3}

c) -9

d) -54

e) -288

Enviada por Laura Helena

Então vamos lá.

Como queremos o determinante de C e temos uma expressão que relaciona as matrizes A, B e C, vamos começar por aí:

I = -3C^{-1}(2B^{-1} + A)^{T}

Multiplicando ambos os lados pela esquerda por -\frac{1}{3}C teremos:

(-\frac{1}{3}) \cdot C \cdot I = (-\frac{1}{3}) \cdot C \cdot (-3C^{-1}) \cdot (2B^{-1} + A)^{T}

Resultando em:

(-\frac{1}{3}) \cdot C = I \cdot (2B^{-1} + A)^{T}

Continuando e aplicando a transposta de ambos os lados:

[(-\frac{1}{3}) \cdot C]^T = 2B^{-1} + A \Rightarrow 2B^{-1} = [(-\frac{1}{3}) \cdot C]^T - A

Finalmente:

B^{-1} = \frac{1}{2} \cdot [(-\frac{1}{3}) \cdot C]^T - \frac{1}{2} \cdot A \Rightarrow B^{-1} = \frac{1}{2} \cdot (-\frac{1}{3}) \cdot C^T - \frac{1}{2} \cdot A

Pronto. Sabendo que (AB)^{-1} = B^{-1} \cdot A^{-1}, podemos agora trabalhar sobre a expressão dada:

\det((AB)^{-1} + \frac{I}{2}) = 4 \Rightarrow \det (B^{-1} \cdot A^{-1} + \frac{I}{2}) = 4

Da inversa de B que achamos:

\det((\frac{1}{2} \cdot (-\frac{1}{3}) \cdot C^T - \frac{1}{2} \cdot A) \cdot A^{-1} + \frac{I}{2}) = 4 \Rightarrow \det(-\frac{1}{6} \cdot C^T \cdot A^{-1}  - \frac{1}{2} \cdot A \cdot A^{-1} + \frac{I}{2}) = 4

Como A \cdot A^{-1} = I, teremos:

\det(-\frac{1}{6} \cdot C^T \cdot A^{-1}) = 4

Aolicando o Teorema de Binet, clique AQUI para ver o que já falamos disso, e as propriedades envolvendo o determinante da transposta, o determinante de uma matriz multiplicada por um número real e o determinante da inversa, teremos:

(-\frac{1}{6})^3 \cdot \det (C^T) \cdot \det (A^{-1}) = 4

Logo:

-\frac{1}{216} \cdot \det C \cdot 3 = 4 \Rightarrow \det C = -288

Chegando, finalmente (Ufa!) à opção E.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Publicidade

Fala que te escuto:

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s