Teorema de Jacobi

Olá pessoal, já ouviram falar do Teorema de Jacobi? Sabe pra que serve? Se sim, ou se não, vamos dar uma olhada nele.

Carl Gustav Jakob Jacobi

Em primeiro lugar, o Teorema de Jacobi diz respeito ao determinante de matrizes quadradas. Vejamos o que ele diz:

Se A_{n \times n} é uma matriz quadrada de ordem n, ao substituir cada elemento a_{pj} da linha p (p \in \{1,2,\ldots,n\}) da matriz A pelos próprios elementos da linha p por elementos a_{qj} da linha q (q \in \{1,2,\ldots,n\} e p \ne q) da matriz multiplicados por uma constante real k o determinante da nova matriz B é idêntico ao determinante de A. Ou seja, vamos admitir, sem perda de generalidade, que p > q, teremos:

\left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} & a_{p2} & a_{p3} & \ldots & a_{pn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert  = \left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} + ka_{q1} & a_{p2} + ka_{q2}& a_{p3} + ka_{q3} & \ldots & a_{pn} + ka_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert

Veja que a linha q que foi usada como “base” continuou igual, e substituímos a linha p pelos resultados obtidos com a operação. Vejamos um exemplo simples de uma matriz M de ordem 2:

Exemplo: Calcular o determinante da matriz M = \left[ \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right].

Este é apenas um exemplo simples, mas veja que os números farão com que o processo seja trabalhoso, já que teremos:

\det M = 103 \cdot 150 - 120 \cdot 201 = 15450 - 24120 = -8670

Aplicando o Teorema de Jacobi, poderemos calcular como segue:

\det M = \left\vert \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ 201 + (-2) \cdot 103 & 150 + (-2) \cdot 120 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ -5 & -90 \\ \end{array} \right\vert

O que nos dará:

\det M = 103 \cdot (-90) - (-5) \cdot 120 = -9270 + 600 = -8670

Veja que, apesar de ainda “grandes” a ordem de grandeza dos produtos é muito menor. Vejamos mais um exemplo. Agora com uma matriz muito maior.

Exemplo: Calcule o determinante a seguir: \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert.

Vamos aplicar então o Teorema de Jacobi, para tentar simplificar o cálculo deste determinante. Façamos a nova segunda linha (L_2') como L_2' = L_2 + (-6) \cdot L_1 e a nova terceira linha (L_3') como L_3' = L_3 + (-11) \cdot L_1, assim teremos:

\left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 - 6 & 7 - 12 & 8 - 18 & 9 - 24 & 10 - 30 \\ 11 - 11 & 12-22 & 13-33 & 14-44 & 15-55 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert = \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & -10 & -20 & -30 & -40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =

Isto já é suficiente para perceber que o determinante é nulo, pois a terceira linha é proporcional à segunda linha. Mas podemos reaplicar o Teorema de Jacobi. A nova terceira linha L_3'' = (-2) \cdot L_2'+ L_3', veja:

=  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 +0 & -10+10 & -20+20 & -30+30 & -40+40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & 0 & 0 & 0 & 0 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert

Que é nulo, pois há uma fileira nula. Para conferir, basta aplicar o Teorema de Laplace.

Para saber um pouco mais sobre quem foi Jacobi, clique aqui.

Pré-AFA 2019 | Listas das Semanas 13, 14, 15 e 16

Olá leitores, mais uma sequência de listas de exercícios. Nas últimas semanas acumulamos listas, mas agora elas estão todas aí disponíveis:

Essas foram as listas de exercícios das últimas quatro semanas. Bom proveito e boa páscoa!

{LSB]

Pré-AFA 2019 | Listas das Semanas 10, 11 e 12

Olá leitores,

passou o carnaval e voltamos com força total. Estas foram as listas das últimas três semanas. Demoramos um pouco mais por conta de uma rotina bem apertada de trabalho fora do site. Mas estamos na linha novamente. E com muitas novidades.

Foi isso galera.

Bom fim de semana e bons estudos.

Pré-AFA 2019 | Listas das Semana #7 e #8

Olá leitores.

As últimas duas semanas foram bastante corridas. Mas, como prometido e previsto, aqui estão as listas das últimas duas semanas pra que vocês possam se divertir bastante ao longo do carnaval de 2019:

Bom, essas foram as listas da semana #7 e #8.

Bom carnaval.

Pré-AFA 2019 | Listas da Semana #6

Como prometido, estamos de volta com as listas da sexta semana do curso da pré-AFA 2019 no Curso Lincoln. Os arquivos seguem abaixo.

Mais uma semana bem produtiva. Aproveitem e divirtam-se neste fim de semana com essas listas.

Grande abraço.

[LSB]

Pré-AFA 2019 | Listas da Semana #5

Olá,

estamos fechando mais uma semana (semana #6) na turma pré-AFA de 2019. Mas não é por isso que vamos deixar de publicar por aqui as listas da semana #5.

Esta foi uma semana produtiva para nós e esperamos que seja para vocês também.

Bons estudos e bom fim de semana.

[LSB]

Pré-AFA 2019 — Listas da Semana #4

Mais uma semana de Pré-AFA turma de 2019. Seguem as listas desta semana.

Esses foram os arquivos da nossa semana #4!

Bons estudos e até breve!

Pré-AFA 2019 | Listas da Semana #3

Continuando nossa programação seguem as listas de exercícios da terceira semana da turma pré-AFA 2019 do Curso Lincoln.


Esses foram os arquivos da terceira semana.

Bons estudos e até breve.

[LSB]

Pré-AFA 2019 — Listas da Semana #2

Olá,

voltamos com as listas da semana #2 da pré-AFA do curso Lincoln.

Essas foram as listas desta semana.

Até a próxima pessoal.

[LSB]

Mais Algumas Listas de Física!

Seguem algumas listas de exercícios de física!

São listas que apliquei em um curso em que trabalho.

Bons estudos!