Somas de Newton: uma Grande Ajuda!!!

Olá leitor.

Hoje trazemos um problema que envolve um sistema de equações não lineares e que, a princípio, parece fácil, mas na realidade, envolve métodos mais sofisticados que simplesmente substituir uma equação na outra. Veja o problema a seguir:

Sejam x, y e z números complexos que satisfazem o sistema de equações abaixo:

\left\{\begin{array}{l} x + y + z = 7 \\ x^2 + y^2 + z^2 = 25 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{4} \\ \end{array} \right.

O valor da soma x^3 + y^3 + z^3 é:

a) 210

b) 235

c) 250

d) 320

e) 325

Enviada por Matheus

Podemos inicialmente pensar em um polinômio P(n) tal que x, y e z sejam exatamente suas raízes e seja escrito como:

P(n) = a_3n^3 + a_2n^2 + a_1n + a_0

Das relações de Girard e do sistema dado chegamos a:

x + y + z = -\frac{a_2}{a_3} \Rightarrow -\frac{a_2}{a_3} = 7 \Rightarrow a_2 = -7a_3

Alem disso, sabendo que (x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+xz), portanto:

(7)^2 = 25 + 2 \cdot \frac{a_1}{a_3} \Rightarrow \frac{a_1}{a_3} = 12 \Rightarrow a_1 = 12a_3

Da última equação do sistema:

\frac{xy+xz+yz}{xyz} = \frac{1}{4} \Rightarrow \frac{\frac{a_1}{a_3}}{-\frac{a_0}{a_3}} = \frac{1}{4} \Rightarrow a_0 = -4a_1

Ou seja a_0 = 4 \cdot (12 a_3) \Rightarrow a_0 = -48a_3. Finalmente, podemos usar as somas de Newton:

a_3S_3 + a_2S_2+a_1S_1+a_0S_0 = 0

Teremos:

a_3 \cdot S_3 + (-7a_3)\cdot 25 + (12a_3)\cdot 7 + (-48a_3)\cdot 3 = 0

Como a_3 \ne 0, temos:

S_3 - 175 + 84 - 144 = 0 \Rightarrow S_3 = 235

Chegando à opção B.

Como observação, não nos estendemos sobre as somas de Newton, mas o faremos em momento oportuno!!!

Até a próxima!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Fala que te escuto:

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s