Matrizes Inversíveis

Você sabe quando uma matriz é inversível?

Uma matriz A é inversível (ou invertível) quando admite inversa (ou seja, não falei nada!). Mas para admitir inversa o determinante de A deve ser diferente de zero, isto é, A só admite inversa se, e somente se, \det A \ne 0.

Vejamos um exemplo.

Sejam m e n números reais com m \ne n e as matrizes A = \left( \begin{array}{cc} 2 & 1 \\ 3 & 5 \end{array} \right) e B = \left( \begin{array}{rr} -1 & 1 \\ 0 & 1 \end{array} \right). Para que a matriz mA + nB seja não inversível é necessário que:

a) m e n sejam positivos

b) m e n sejam negativos

c) m e n tenham sinais contrários

d) n^2 = 7m^2

Enviada por Marcus Tavares

Vamos então calcular a matriz pedida antes de procurar seu determinante:

mA + nB =\left( \begin{array}{rr} 2m & m \\ 3m & 5m \end{array} \right) + \left( \begin{array}{rr} - n &  n \\ 0 &  n \end{array} \right) = \left( \begin{array}{rr} 2m - n & m + n \\ 3m & 5m + n \end{array} \right)

Calculando agora \det(mA + nB) encontramos:

\det(mA + nB) = (2m - n)(5m + n) - (m+n) \cdot 3m

Para que a matriz seja não inversível, devemos ter seu determinante nulo:

(2m - n)(5m + n) - (m+n) \cdot 3m = 0

Desenvolvendo:

10m^2 + 2mn - 5mn - n^2 - (3m^2 + 3mn) = 0

Logo:

7m^2 - 6mn - n^2 = 0

Veja que, se n = 0 teremos 7m^2 = 0, logo m = n = 0, mas m \ne n, logo, podemos dividir toda a expressão por n^2:

7 \cdot (\frac{m}{n})^2 - 6 \cdot  \frac{m}{n} - 1 = 0

Resolvendo:

\frac{m}{n} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 7 \cdot (-1)}}{2 \cdot 7}

Finalmente:

\frac{m}{n} = \frac{6 \pm \sqrt{36 + 28}}{14} \Rightarrow \frac{m}{n} = \frac{6 \pm 8}{14}

Há portanto, dois valores: \frac{m}{n} = 1, mas nesse caso, m = n, o que não é permitido pelas condições do problema; ou \frac{m}{n} = -\frac{1}{7} < 0 e, nesse caso, m e n têm sinais opostos, nos levando, então à opção C.

Pra fechar, vou deixar um vídeo sobre a inversa de uma matriz:

Espero que ajude.

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Fala que te escuto:

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s