Matrizes Inversíveis

Você sabe quando uma matriz é inversível?

Uma matriz A é inversível (ou invertível) quando admite inversa (ou seja, não falei nada!). Mas para admitir inversa o determinante de A deve ser diferente de zero, isto é, A só admite inversa se, e somente se, \det A \ne 0.

Vejamos um exemplo.

Sejam m e n números reais com m \ne n e as matrizes A = \left( \begin{array}{cc} 2 & 1 \\ 3 & 5 \end{array} \right) e B = \left( \begin{array}{rr} -1 & 1 \\ 0 & 1 \end{array} \right). Para que a matriz mA + nB seja não inversível é necessário que:

a) m e n sejam positivos

b) m e n sejam negativos

c) m e n tenham sinais contrários

d) n^2 = 7m^2

Enviada por Marcus Tavares

Vamos então calcular a matriz pedida antes de procurar seu determinante:

mA + nB =\left( \begin{array}{rr} 2m & m \\ 3m & 5m \end{array} \right) + \left( \begin{array}{rr} - n &  n \\ 0 &  n \end{array} \right) = \left( \begin{array}{rr} 2m - n & m + n \\ 3m & 5m + n \end{array} \right)

Calculando agora \det(mA + nB) encontramos:

\det(mA + nB) = (2m - n)(5m + n) - (m+n) \cdot 3m

Para que a matriz seja não inversível, devemos ter seu determinante nulo:

(2m - n)(5m + n) - (m+n) \cdot 3m = 0

Desenvolvendo:

10m^2 + 2mn - 5mn - n^2 - (3m^2 + 3mn) = 0

Logo:

7m^2 - 6mn - n^2 = 0

Veja que, se n = 0 teremos 7m^2 = 0, logo m = n = 0, mas m \ne n, logo, podemos dividir toda a expressão por n^2:

7 \cdot (\frac{m}{n})^2 - 6 \cdot  \frac{m}{n} - 1 = 0

Resolvendo:

\frac{m}{n} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 7 \cdot (-1)}}{2 \cdot 7}

Finalmente:

\frac{m}{n} = \frac{6 \pm \sqrt{36 + 28}}{14} \Rightarrow \frac{m}{n} = \frac{6 \pm 8}{14}

Há portanto, dois valores: \frac{m}{n} = 1, mas nesse caso, m = n, o que não é permitido pelas condições do problema; ou \frac{m}{n} = -\frac{1}{7} < 0 e, nesse caso, m e n têm sinais opostos, nos levando, então à opção C.

Pra fechar, vou deixar um vídeo sobre a inversa de uma matriz:

Espero que ajude.

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Publicidade

Teorema de Binet

Você conhece o Teorema de Binet? É o que vamos falar hoje.

O Teorema de Binet diz respeito ao produto de matrizes e sua relação com o produto de matrizes. O teorema diz o seguinte:

Se A e B são matrizes quadradas de ordem n, então \det (A \cdot B) = \det A \cdot \det B.

Assim, vamos resolver uma dúvida enviada para mim:

Q é uma matriz 4 \times 4 tal que \det(Q) < 0 e Q^4 + 2Q^2 = 0, então temos:

a) \det Q = -2

b) \det Q = -4

c) \det Q = -8

d) \det Q = -16

Enviada por Laura Helena

Considerando que 0 representa a matriz nula quadrada de ordem 4, podemos escrever:

Q^4 = -2Q^2

Como duas matrizes iguais têm determinantes iguais (a recíproca não é verdadeira!), faremos:

\det(Q^4) = \det(-2Q^2)

Aqui precisamos abrir parênteses; sabemos de outra propriedade importante dos determinantes. Se k \in \mathbb{R} e A é matriz quadrada de ordem n, temos:

\det(kA) = k^n \cdot \det A

Daí, podemos voltar e aplicar o Teorema de Binet na dúvida da Laura:

(\det Q)^4 = (-2)^4 \cdot (\det Q)^2

Como, do enunciado, \det Q < 0, podemos dividir a expressão toda por \det Q:

(\det Q)^2 = 16 \Rightarrow \det Q = \pm \sqrt{16} \Rightarrow \det Q = \pm 4

Usando de novo a restrição do enunciado, encontramos \det Q = -4.

Opção B.

Pra fechar, vou deixar dois vídeos sobre isso. O primeiro que gravei em 2016, falando disso e um mais recente de 2020.

Gravado em 2016, durante uma parceria com um curso preparatório da Ilha do Governador — RJ.
Gravado recentemente, em 2020. Resolvendo um exercício!

Para saber um pouco mais sobre quem foi Binet, clique aqui.

Tomara que isto ajude a sanar a dúvida.

Grande abraço.

Minha iniciativa é GRATUITA.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer AJUDA é bem vinda!

E a melhor ajuda que você pode é DE GRAÇA, GRÁTIS, 0800: só basta DIVULGAR esta iniciativa PRA QUEM PRECISA!

Até!

[LSB]

Uma Dúvida Interessante Sobre Conjunto-Solução

Olá pessoal, há algum tempo, recebi este comentário aqui no site. Como um dos vídeos mais vistos em nosso canal no Youtube (veja ele aqui ou no final desta postagem!) trata deste assunto, resolvi resolver e comentar um pouco sobre isto.

A dúvida é da Helena e diz o seguinte:

Se a equação X^4 - KX^2 = 0 tem solução S = \{-9;0;9\}, então:
a) K=9
b) K=81
c) K=18
d) K=0
e) K= -9

Helena

Inicialmente quero agradecer pela interação com o site, que por muito tempo ficou parado e que agora minha meta é manter funcionando. Bom, vamos lá. Em primeiro lugar, vamos considerar algumas coisas.

(1) Vamos adotar que a equação tem X como incógnita, ou seja, este é o valor que queremos calcular. Isto faz sentido, porque se K fosse a variável, bastaria isolar K, fazendo:

-KX^2 = -X^4 \Rightarrow K = {X^2} \qquad \textrm{para } X \ne 0

Mas, como esta é uma equação literal do primeiro grau na incógnita K, seu conjunto-solução só poderia admitir um único valor. O que contrariaria o enunciado.

(2) O que o enunciado chama de “solução” na realidade é o conjunto-solução S; que é o conjunto cujos elementos solucionam a equação proposta, isto é, são soluções dela. Como S tem mais de um elemento e a equação está na forma de um polinômio, já sabemos que ele não pode ser do primeiro grau, já que pelo Teorema Fundamental da Álgebra uma equação polinomial de grau n tem exatamente n soluções complexas (no conjunto dos números complexos) e no máximo n soluções reais (em \mathbb{R}).

(3) Entendido isso, podemos trabalhar sobre a incógnita como sendo X. Assim, colocando X^2 em evidência, teremos:

X^2 \cdot (X^2 - K) = 0

Para que um produto de dois números seja nulo, é necessário que pelo menos um deles seja zero. Assim, sabemos que X^2 = 0, logo X = 0, caracterizando duas raízes reais e iguais a zero; ou X^2 - K = 0, daí:

X^2 = K \Rightarrow X = +\sqrt{K} \quad \textrm{ou} \quad X = -\sqrt{K}

Ou seja, temos um conjunto solução, que chamaremos de S' representado por S'= \{-\sqrt{K}; 0; +\sqrt{K}\}, que pressupõe necessariamente que K \geq 0.

Como S = S' devemos ter exatamente os mesmos elementos em ambos, ou seja \sqrt{K} = 9. Portanto, para K \geq 0, sabemos que K = 81. Teremos, então a opção B.

Assim, pra fecharmos o assunto, é necessário fazer algumas considerações importantes:

  • Verificar sempre quem é a incógnita da equação;
  • Verificar quem é o conjunto universo no qual se está trabalhando. No osso caso consideramos o conjunto dos números reais \mathbb{R}, mas poderíamos ter os naturais \mathbb{N}, inteiros \mathbb{Z}, complexos \mathbb{C}, etc;
  • É importante entender o papel do conjunto-solução em uma equação; e
  • Cuidado com equações literais.

É isso, espero ter respondido a dúvida da Helena e de outras pessoas, mesmo com um “certo” atraso.

Vídeo sobre conjunto-solução em nosso canal:

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Até!

[LSB]

Tira-Teima #7: Médias

Questão enviada por Ederson Ferreira

FADESP-SEDUC 2007-PA – Um professor de matemática avaliou duas de suas turmas: a primeira obteve média aritmética das notas igual a 7 e a segunda, média aritmética iguala 6. Se a média aritmética das duas turmas juntas foi  igual  a  6,4,  então  a  quantidade  de  alunos  da  turma  que  obteve  média  7,  em  relação  ao  total, representa

(A)  30\%.

(B)  40\%.

(C)  50\%.

(D)  60\%.

Veja a solução aqui.