Live: Geometria e Matrizes

Quer treinar um pouco os conceitos básicos de Geometria Plana e algumas propriedades de matrizes e de suas operações?

Então dá uma boa olhada nesse vídeo!

Você pode pegar as questões usadas neste material clicando AQUI.

Entre em nosso grupo no WhatsApp e receba semanalmente estas listas. Que são sempre corrigidas nas lives às quartas-feiras. Para entrar no grupo, clica AQUI.

A imagem com todas as questões resolvidas na live está logo abaixo.

Minha iniciativa é GRATUITA.

AJUDE:

👉🏼 Doe qualquer quantia via PIX: leonardosantos.inf@gmail.com

👉🏼 Siga-nos: 

http://www.instagram.com/mentorblog_oficial

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: 

👉🏼 DIVULGUE esta iniciativa!

Até!

[LSB]

Publicidade

EsPCEx: 47 Questões de Matemática na Reta Final!

Olá leitor!

A EsPCEx de 2021/2022 tá chegando e, com ela, se intensificam as listas de revisão de conteúdo. Deixo, então uma lista com 47 questões de matemática da EsPCEx pra você que irá fazer a prova em breve!

Bons estudos e boa semana!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Alguns Bons Exercícios para a EEAr!

Olá leitores!

Segue uma pequena lista com sete exercícios de matemática de assuntos diversos, criados por mim, para simular questões da EEAr.

São poucos exercícios, mas são interessantes. Pode confiar.

Bons estudos!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Jacobi, Laplace, Sarrus e, talvez… Chió?

Olá leitores!

Hoje trazemos uma dúvida de dois leitores. Vamos lá:

Calcule \det(A) sabendo que A = \left(\begin{array}{ccccc} 4 & 3 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 & 3 \\ 3 & 3 & 4 & 3 & 3 \\ 3 & 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 3 & 4 \\ \end{array}\right).

a) 64

b) 128

c) 16

d) 32

e) 8

Milena Figueiredo e Artur Ardasse

Vamos à solução:

Primeiro vamos usar o Teorema de Jacobi, multiplicando a primeira linha por (-1) e somando a cada uma das demais:

\det A = \left \vert \begin{array}{rrrrr} 4 & 3 & 3 & 3 & 3 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\-1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ \end{array} \right \vert

A partir daí, podemos usar o Teorema de Laplace na quinta linha. Vamos lá:

\det A = (-1) \cdot (-1)^{5+1} \cdot  \left \vert \begin{array}{rrrr}  3 & 3 & 3 & 3 \\  1 & 0 & 0 & 0 \\  0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\  \end{array} \right \vert + 1 \cdot (-1)^{5+5} \cdot  \left \vert \begin{array}{rrrr}  4 & 3 & 3 & 3 \\  -1 & 1 & 0 & 0 \\  -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\  \end{array} \right \vert

Fazendo as devidas simplificações envolvendo os números que multiplicam estes determinantes:

\det A = - \left \vert \begin{array}{rrrr}  3 & 3 & 3 & 3 \\  1 & 0 & 0 & 0 \\  0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\  \end{array} \right \vert +  \left \vert \begin{array}{rrrr}  4 & 3 & 3 & 3 \\  -1 & 1 & 0 & 0 \\  -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\  \end{array} \right \vert

Continuando, podemos reaplicar o Teorema de Laplace na segunda linha no primeiro determinante e na quarta linha do segundo:

\det A = - \left[ 1 \cdot (-1)^{2+1}  \cdot \left \vert \begin{array}{rrr}  3 & 3 & 3 \\   1 & 0 & 0 \\  0 & 1 & 0 \\  \end{array} \right \vert \right] + (-1) \cdot (-1)^{4+1} \cdot  \left \vert \begin{array}{rrrr}  3 & 3 & 3 \\  1 & 0 & 0 \\   0 & 1 & 0 \\   \end{array} \right \vert + 1 \cdot (-1)^{4+4} \cdot \left \vert \begin{array}{rrrr}  4 & 3 & 3 \\  -1 & 1 & 0 \\   -1 & 0 & 1 \\   \end{array} \right \vert

Simplificando um pouco:

\det A =  \left \vert \begin{array}{rrr}  3 & 3 & 3 \\   1 & 0 & 0 \\  0 & 1 & 0 \\  \end{array} \right \vert +  \left \vert \begin{array}{rrrr}  3 & 3 & 3 \\  1 & 0 & 0 \\   0 & 1 & 0 \\   \end{array} \right \vert + \left \vert \begin{array}{rrrr}  4 & 3 & 3 \\  -1 & 1 & 0 \\   -1 & 0 & 1 \\   \end{array} \right \vert

Veja que os dois primeiros acima são iguais. Agora podemos usar a Regra de Sarrus em todos eles:

\det A = 3 + 3 + (4 + 3 + 3) = 16

Pelo visto, opção C.

Bom, mas e a regra de Chió…? Talvez valha a pena tentar usá-la, entretanto… acho que vai ser bem mais trabalhoso.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EFOMM: Uma Pequena Lista!

Olá leitores, sem mais demora trago pra vocês uma lista com cerca de 20 exercícios da Escola de Formação de Oficiais da Marinha Mercante, também conhecida como EFOMM.

São exercícios gerais, envolvendo conjuntos, P.A., P.G., matrizes, determinantes, sistemas lineares, geometria (principalmente trigonometria no triângulo), e outros assuntos que podem vir de “coadjuvantes” em algumas questões, se é que você me entende…

Clica no link abaixo pra pegar a lista:

Bons estudos e espero que você seja feliz!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Anúncios

Matrizes Inversíveis

Você sabe quando uma matriz é inversível?

Uma matriz A é inversível (ou invertível) quando admite inversa (ou seja, não falei nada!). Mas para admitir inversa o determinante de A deve ser diferente de zero, isto é, A só admite inversa se, e somente se, \det A \ne 0.

Vejamos um exemplo.

Sejam m e n números reais com m \ne n e as matrizes A = \left( \begin{array}{cc} 2 & 1 \\ 3 & 5 \end{array} \right) e B = \left( \begin{array}{rr} -1 & 1 \\ 0 & 1 \end{array} \right). Para que a matriz mA + nB seja não inversível é necessário que:

a) m e n sejam positivos

b) m e n sejam negativos

c) m e n tenham sinais contrários

d) n^2 = 7m^2

Enviada por Marcus Tavares

Vamos então calcular a matriz pedida antes de procurar seu determinante:

mA + nB =\left( \begin{array}{rr} 2m & m \\ 3m & 5m \end{array} \right) + \left( \begin{array}{rr} - n &  n \\ 0 &  n \end{array} \right) = \left( \begin{array}{rr} 2m - n & m + n \\ 3m & 5m + n \end{array} \right)

Calculando agora \det(mA + nB) encontramos:

\det(mA + nB) = (2m - n)(5m + n) - (m+n) \cdot 3m

Para que a matriz seja não inversível, devemos ter seu determinante nulo:

(2m - n)(5m + n) - (m+n) \cdot 3m = 0

Desenvolvendo:

10m^2 + 2mn - 5mn - n^2 - (3m^2 + 3mn) = 0

Logo:

7m^2 - 6mn - n^2 = 0

Veja que, se n = 0 teremos 7m^2 = 0, logo m = n = 0, mas m \ne n, logo, podemos dividir toda a expressão por n^2:

7 \cdot (\frac{m}{n})^2 - 6 \cdot  \frac{m}{n} - 1 = 0

Resolvendo:

\frac{m}{n} = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 7 \cdot (-1)}}{2 \cdot 7}

Finalmente:

\frac{m}{n} = \frac{6 \pm \sqrt{36 + 28}}{14} \Rightarrow \frac{m}{n} = \frac{6 \pm 8}{14}

Há portanto, dois valores: \frac{m}{n} = 1, mas nesse caso, m = n, o que não é permitido pelas condições do problema; ou \frac{m}{n} = -\frac{1}{7} < 0 e, nesse caso, m e n têm sinais opostos, nos levando, então à opção C.

Pra fechar, vou deixar um vídeo sobre a inversa de uma matriz:

Espero que ajude.

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Sina-nos no instagram @curso_mentor_oficial

Até!

[LSB]

Teorema de Binet

Você conhece o Teorema de Binet? É o que vamos falar hoje.

O Teorema de Binet diz respeito ao produto de matrizes e sua relação com o produto de matrizes. O teorema diz o seguinte:

Se A e B são matrizes quadradas de ordem n, então \det (A \cdot B) = \det A \cdot \det B.

Assim, vamos resolver uma dúvida enviada para mim:

Q é uma matriz 4 \times 4 tal que \det(Q) < 0 e Q^4 + 2Q^2 = 0, então temos:

a) \det Q = -2

b) \det Q = -4

c) \det Q = -8

d) \det Q = -16

Enviada por Laura Helena

Considerando que 0 representa a matriz nula quadrada de ordem 4, podemos escrever:

Q^4 = -2Q^2

Como duas matrizes iguais têm determinantes iguais (a recíproca não é verdadeira!), faremos:

\det(Q^4) = \det(-2Q^2)

Aqui precisamos abrir parênteses; sabemos de outra propriedade importante dos determinantes. Se k \in \mathbb{R} e A é matriz quadrada de ordem n, temos:

\det(kA) = k^n \cdot \det A

Daí, podemos voltar e aplicar o Teorema de Binet na dúvida da Laura:

(\det Q)^4 = (-2)^4 \cdot (\det Q)^2

Como, do enunciado, \det Q < 0, podemos dividir a expressão toda por \det Q:

(\det Q)^2 = 16 \Rightarrow \det Q = \pm \sqrt{16} \Rightarrow \det Q = \pm 4

Usando de novo a restrição do enunciado, encontramos \det Q = -4.

Opção B.

Pra fechar, vou deixar dois vídeos sobre isso. O primeiro que gravei em 2016, falando disso e um mais recente de 2020.

Gravado em 2016, durante uma parceria com um curso preparatório da Ilha do Governador — RJ.
Gravado recentemente, em 2020. Resolvendo um exercício!

Para saber um pouco mais sobre quem foi Binet, clique aqui.

Tomara que isto ajude a sanar a dúvida.

Grande abraço.

Minha iniciativa é GRATUITA.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer AJUDA é bem vinda!

E a melhor ajuda que você pode é DE GRAÇA, GRÁTIS, 0800: só basta DIVULGAR esta iniciativa PRA QUEM PRECISA!

Até!

[LSB]

Matrizes Inversas: Use a Definição!

Olá pessoal, hoje quero falar um pouco sobre a matriz inversa. Mas, antes de mostrar a utilização da definição pra resolver um exercício, vamos relembrar o que significa a inversão de uma matriz.

Vamos considerar que A, B e I_n são duas matrizes quadradas de ordem n e a matriz identidade de ordem n, respectivamente. Então:

A \cdot B = B \cdot A = I_n

A matriz B é chamada de matriz inversa de A e podemos escrever B = A^{-1}. Assim:

A \cdot A^{-1} = A^{-1} \cdot A = I_n

Com isso, podemos mostrar que a inversa de A é única, mas isso vai ficar pra depois. Vamos focar, por enquanto, no que interessa.

O que queremos verificar é o seguinte:

Se conhecemos as matrizes quadradas A e B, de ordem n, tais que A \cdot X = B, quem é a matriz X que satisfaz esta equação?

Bom, como conhecemos a matriz A, sabemos como obter sua inversa; logo, podemos fazer:

A^{-1} \cdot A \cdot X = A^{-1} \cdot B

Ou seja, multiplicamos toda a equação, pela esquerda, por A^{-1}. Como A^{-1} \cdot A = I_n, da definição de inversa, podemos escrever:

I \cdot X = A^{-1} \cdot B \Rightarrow X = A^{-1} \cdot B

Assim já temos a matriz X, uma vez que basta inverter a matriz A, se ela é conhecida. Tudo bem, mas e o exemplo de aplicação? Veja a imagem a seguir com uma questão do concurso da EsPCEx de 1999/2000.

Essa foi a 25ª questão da prova aplicada em 1999.

Veja que podemos chamar a matriz dos coeficientes de C, a matriz das incógnitas de X e a matriz resultante de R, tendo assim a equação a seguir:

C \cdot X = R

Mas, como já vimos:

C^{-1} \cdot C \cdot X = C^{-1} \cdot R \Rightarrow X = C^{-1} \cdot R

E, de acordo com o enunciado, isto se traduz em:

X = \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[ \begin{array}{rrr} 1 & 1 & 0 \\ 0 & -1 & 2 \\ -1 & 0 & 1 \\ \end{array} \right] \cdot  \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right]

Que podemos resolver facilmente, multiplicando a matriz inversa de C pela matriz coluna R :

X = \left[\begin{array}{c} 1+1+0 \\ 0-1+4 \\ -1+0+2 \end{array} \right] \Rightarrow  \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 2 \\ 3 \\ 1 \end{array} \right]

Como as duas matriz são iguais, teremos x = 2, y = 3 e z = 1, opção E.

E aí, gostou dessa aplicação de matriz inversa?

Segue um vídeo falando um pouco mais sobre operações com matrizes com outro exemplo, porém na EEAr:

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Até!

[LSB]

Teorema de Jacobi

Olá pessoal, já ouviram falar do Teorema de Jacobi? Sabe pra que serve? Se sim, ou se não, vamos dar uma olhada nele.

Carl Gustav Jakob Jacobi

Em primeiro lugar, o Teorema de Jacobi diz respeito ao determinante de matrizes quadradas. Vejamos o que ele diz:

Se A_{n \times n} é uma matriz quadrada de ordem n, ao substituir cada elemento a_{pj} da linha p (p \in \{1,2,\ldots,n\}) da matriz A pelos próprios elementos da linha p por elementos a_{qj} da linha q (q \in \{1,2,\ldots,n\} e p \ne q) da matriz multiplicados por uma constante real k o determinante da nova matriz B é idêntico ao determinante de A. Ou seja, vamos admitir, sem perda de generalidade, que p > q, teremos:

\left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} & a_{p2} & a_{p3} & \ldots & a_{pn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert  = \left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} + ka_{q1} & a_{p2} + ka_{q2}& a_{p3} + ka_{q3} & \ldots & a_{pn} + ka_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert

Veja que a linha q que foi usada como “base” continuou igual, e substituímos a linha p pelos resultados obtidos com a operação. Vejamos um exemplo simples de uma matriz M de ordem 2:

Exemplo: Calcular o determinante da matriz M = \left[ \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right].

Este é apenas um exemplo simples, mas veja que os números farão com que o processo seja trabalhoso, já que teremos:

\det M = 103 \cdot 150 - 120 \cdot 201 = 15450 - 24120 = -8670

Aplicando o Teorema de Jacobi, poderemos calcular como segue:

\det M = \left\vert \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ 201 + (-2) \cdot 103 & 150 + (-2) \cdot 120 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ -5 & -90 \\ \end{array} \right\vert

O que nos dará:

\det M = 103 \cdot (-90) - (-5) \cdot 120 = -9270 + 600 = -8670

Veja que, apesar de ainda “grandes” a ordem de grandeza dos produtos é muito menor. Vejamos mais um exemplo. Agora com uma matriz muito maior.

Exemplo: Calcule o determinante a seguir: \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert.

Vamos aplicar então o Teorema de Jacobi, para tentar simplificar o cálculo deste determinante. Façamos a nova segunda linha (L_2') como L_2' = L_2 + (-6) \cdot L_1 e a nova terceira linha (L_3') como L_3' = L_3 + (-11) \cdot L_1, assim teremos:

\left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 - 6 & 7 - 12 & 8 - 18 & 9 - 24 & 10 - 30 \\ 11 - 11 & 12-22 & 13-33 & 14-44 & 15-55 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert = \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & -10 & -20 & -30 & -40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =

Isto já é suficiente para perceber que o determinante é nulo, pois a terceira linha é proporcional à segunda linha. Mas podemos reaplicar o Teorema de Jacobi. A nova terceira linha L_3'' = (-2) \cdot L_2'+ L_3', veja:

=  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 +0 & -10+10 & -20+20 & -30+30 & -40+40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & 0 & 0 & 0 & 0 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert

Que é nulo, pois há uma fileira nula. Para conferir, basta aplicar o Teorema de Laplace.

Para saber um pouco mais sobre quem foi Jacobi, clique aqui.