Teorema de Binet

Você conhece o Teorema de Binet? É o que vamos falar hoje.

O Teorema de Binet diz respeito ao produto de matrizes e sua relação com o produto de matrizes. O teorema diz o seguinte:

Se A e B são matrizes quadradas de ordem n, então \det (A \cdot B) = \det A \cdot \det B.

Assim, vamos resolver uma dúvida enviada para mim:

Q é uma matriz 4 \times 4 tal que \det(Q) < 0 e Q^4 + 2Q^2 = 0, então temos:

a) \det Q = -2

b) \det Q = -4

c) \det Q = -8

d) \det Q = -16

Enviada por Laura Helena

Considerando que 0 representa a matriz nula quadrada de ordem 4, podemos escrever:

Q^4 = -2Q^2

Como duas matrizes iguais têm determinantes iguais (a recíproca não é verdadeira!), faremos:

\det(Q^4) = \det(-2Q^2)

Aqui precisamos abrir parênteses; sabemos de outra propriedade importante dos determinantes. Se k \in \mathbb{R} e A é matriz quadrada de ordem n, temos:

\det(kA) = k^n \cdot \det A

Daí, podemos voltar e aplicar o Teorema de Binet na dúvida da Laura:

(\det Q)^4 = (-2)^4 \cdot (\det Q)^2

Como, do enunciado, \det Q < 0, podemos dividir a expressão toda por \det Q:

(\det Q)^2 = 16 \Rightarrow \det Q = \pm \sqrt{16} \Rightarrow \det Q = \pm 4

Usando de novo a restrição do enunciado, encontramos \det Q = -4.

Opção B.

Pra fechar, vou deixar dois vídeos sobre isso. O primeiro que gravei em 2016, falando disso e um mais recente de 2020.

Gravado em 2016, durante uma parceria com um curso preparatório da Ilha do Governador — RJ.
Gravado recentemente, em 2020. Resolvendo um exercício!

Para saber um pouco mais sobre quem foi Binet, clique aqui.

Tomara que isto ajude a sanar a dúvida.

Grande abraço.

Minha iniciativa é GRATUITA.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer AJUDA é bem vinda!

E a melhor ajuda que você pode é DE GRAÇA, GRÁTIS, 0800: só basta DIVULGAR esta iniciativa PRA QUEM PRECISA!

Até!

[LSB]

Teorema de Jacobi

Olá pessoal, já ouviram falar do Teorema de Jacobi? Sabe pra que serve? Se sim, ou se não, vamos dar uma olhada nele.

Carl Gustav Jakob Jacobi

Em primeiro lugar, o Teorema de Jacobi diz respeito ao determinante de matrizes quadradas. Vejamos o que ele diz:

Se A_{n \times n} é uma matriz quadrada de ordem n, ao substituir cada elemento a_{pj} da linha p (p \in \{1,2,\ldots,n\}) da matriz A pelos próprios elementos da linha p por elementos a_{qj} da linha q (q \in \{1,2,\ldots,n\} e p \ne q) da matriz multiplicados por uma constante real k o determinante da nova matriz B é idêntico ao determinante de A. Ou seja, vamos admitir, sem perda de generalidade, que p > q, teremos:

\left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} & a_{p2} & a_{p3} & \ldots & a_{pn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert  = \left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} + ka_{q1} & a_{p2} + ka_{q2}& a_{p3} + ka_{q3} & \ldots & a_{pn} + ka_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert

Veja que a linha q que foi usada como “base” continuou igual, e substituímos a linha p pelos resultados obtidos com a operação. Vejamos um exemplo simples de uma matriz M de ordem 2:

Exemplo: Calcular o determinante da matriz M = \left[ \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right].

Este é apenas um exemplo simples, mas veja que os números farão com que o processo seja trabalhoso, já que teremos:

\det M = 103 \cdot 150 - 120 \cdot 201 = 15450 - 24120 = -8670

Aplicando o Teorema de Jacobi, poderemos calcular como segue:

\det M = \left\vert \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ 201 + (-2) \cdot 103 & 150 + (-2) \cdot 120 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ -5 & -90 \\ \end{array} \right\vert

O que nos dará:

\det M = 103 \cdot (-90) - (-5) \cdot 120 = -9270 + 600 = -8670

Veja que, apesar de ainda “grandes” a ordem de grandeza dos produtos é muito menor. Vejamos mais um exemplo. Agora com uma matriz muito maior.

Exemplo: Calcule o determinante a seguir: \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert.

Vamos aplicar então o Teorema de Jacobi, para tentar simplificar o cálculo deste determinante. Façamos a nova segunda linha (L_2') como L_2' = L_2 + (-6) \cdot L_1 e a nova terceira linha (L_3') como L_3' = L_3 + (-11) \cdot L_1, assim teremos:

\left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 - 6 & 7 - 12 & 8 - 18 & 9 - 24 & 10 - 30 \\ 11 - 11 & 12-22 & 13-33 & 14-44 & 15-55 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert = \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & -10 & -20 & -30 & -40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =

Isto já é suficiente para perceber que o determinante é nulo, pois a terceira linha é proporcional à segunda linha. Mas podemos reaplicar o Teorema de Jacobi. A nova terceira linha L_3'' = (-2) \cdot L_2'+ L_3', veja:

=  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 +0 & -10+10 & -20+20 & -30+30 & -40+40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & 0 & 0 & 0 & 0 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert

Que é nulo, pois há uma fileira nula. Para conferir, basta aplicar o Teorema de Laplace.

Para saber um pouco mais sobre quem foi Jacobi, clique aqui.