EEAr: Mais um Simulado!

Olá leitor.

Hoje trazemos mais um simulado para a EEAr, com 24 questões de matemática mais focadas em geometria, com geometria plana e espacial.

Seguem as questões no link abaixo:

Bons estudos e boa semana!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EsPCEx: um Pequeno Simulado!

Olá leitor.

Hoje trazemos um pequeno simulado de matemática para a EsPCEx. Com 20 questões, envolvendo vários assuntos diferentes.

Espero que te ajude.

Bons estudos.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EEAr: um Simulado de Revisão

Olá leitor!

Está estudando para a EEAr? Segue então um simulado com 24 questões de matemática para a EEAr. Serve como revisão geral para você que fará a prova no próximo dia 30/5.

Bons estudos e boa semana!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

EEAr: Uma Lista Geral de Revisão

Olá leitores.

A primeira prova da EEAr de 2021 está chegando, e com ela se intensificam as aulas de revisão e aprofundamento. Deixamos então aqui uma lista de revisão com cerca de 25 exercícios de temas gerais de provas anteriores da EEAr.

Espero que esta lista te ajude a ficar ainda mais preparado para o concurso.

Bons estudos!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Escola Naval: 32 Questões Gerais de Revisão

Olá pessoal!

Está de bobeira aí?!

Seguem, então, 32 questões de provas antigas (bem antigas, da década de 90!) da Escola Naval, todas com GABARITO para sua revisão nesta reta final!

Divirtam-se:

Bons estudos e boa semana!

[LSB]

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Escola Naval: Sobre Fatorial e Divisores

Olá leitores.

Recebi estes dias uma dúvida que envolve o fatorial de um número e sua divisibilidade por 21. Vamos ver o enunciado e resolver:

(EN) O fatorial de 2020 é divisível por 21^n. O maior valor inteiro de n é:

a) 96

b) 288

c) 334

d) 440

e) 673

Marcus Tavares

Bom, vamos ao que interessa. Para que um número seja divisível por 21 é necessário que ele seja divisível por 3 e por 7. Então vejamos o seguinte: 7! só é divisível por 21^0 e 21^1, pois:

7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1

Assim, fica claro que calculando \frac{7!}{21} teremos um inteiro, pois temos um fator de 7 e, pelo menos, um fator de 3 em 7!. Se continuarmos investigando os fatoriais consecutivos e maiores que 7!, isto não ocorrerá novamente até o 14!, veja:

14! = 14 \times 13 \times 12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1

Fica explícito que 14! é divisível por 21^2, mas não por 21^3, pois há apenas dois fatores de 7, sendo um no próprio 7 e o outro no 14, embora haja muito mais fatores de 3.

Esse processo continua da mesma maneira até chegarmos ao 49!, pois 49 = 7^2, acrescentando, por sua vez, dois fatores de 7. Chegamos, a partir daí a seguinte conclusão:

  • cada múltiplo de 7 acrescenta um fator de 7;
  • cada múltiplo de 49 = 7^2 acrescentará dois fatores de 7, dos quais um já foi contado nos fatores de 7;
  • cada fator de 343 = 7^3 acrescentará três fatores de 7, dos quais dois já foram contados: um deles nos múltiplos de 7 e o outro nos múltiplo de 49;

Então vamos lá! Vamos calcular quantos múltiplos de 7,49,343,\ldots há de 1 a 2020:

  • Sabemos que 2020 = 7 \cdot 288 + 4, logo há 288 múltiplos de 7 de 1 a 2020;
  • Continuando, temos 2020 = 49 \cdot 41 + 11, portanto, há 41 múltiplos de 49 no mesmo intervalo; e
  • Finalmente, 2020 = 343 \cdot 5 + 305, havendo, então, 5 múltiplos.
  • Não há múltiplos de 7^4, pois 7^4 = 2401 > 2020.

Contando agora teremos:

n = 288 + 41 + 5 = 334 fatores de 7 em 2020!

Veja que, se a pergunta fosse, “quantos são os possíveis valores inteiros de n“, ainda incluiríamos o zero, ficando com 335 valores possíveis, sendo o 334 o maior deles!

Espero ter esclarecido!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Aplicação da Identidade de Polinômios

Olá leitor!

Hoje trazemos uma questão que serve pra exemplificar a identidade de polinômios. Vamos lembrar que dois polinômios se tem exatamente os mesmos coeficientes para os mesmos termos. Isto é:

P_1(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0

É idêntico a

P_2(x) = b_nx^n + b_{n-1}x^{n-1} + \ldots + b_1x + b_0

Somente se a_n = b_n, a_{n-1} = b_{n-1}, \ldots, a_0 = b_0. Assim, queremos resolver o seguinte problema:

Determinar a condição necessária e suficiente para que a expressão \frac{a_1x^2 + b_1x+c_1}{a_2x^2+b_2x+c_2}, em que a_1,b_1,c_1,a_2,b_2,c_2 são reais e não nulos, assuma um valor que não dependa de x.

Enviado por Paolla Souza

Se a expressão não depende de x, ela sempre assume um valor k \in \mathbb{R} para qualquer x \in \mathbb{R}. Assim, teremos:

\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2} = k

E, portanto:

a_1x^2 + b_1x + c_1 = ka_2x^2 + kb_2x + k_2c_2

Ou seja, da identidade de polinômios:

a_1 = ka_2, b_1 = kb_2 e c_1 = kc_2

Fica claro que:

\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k

Por exemplo, veja só:

Seja k = 2 e, vamos escolher os coeficientes: \frac{2x^2 + 4x + 2}{x^2+ 2x +1} = 2 para todo x \in \mathbb{R} - \{-1\}, porque -1 é raiz do denominador, obviamente.

Espero ter ajudado.

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Sobre Trinômios Quadrados Perfeitos

Olá leitor.

Hoje, trago uma dúvida essencialmente simples que depende, de forma elementar, da identidade entre dois polinômios. Vamos lá:

Qual a condição para que ax^2 + bx + c seja um quadrado perfeito?

Enviado por Paolla Souza

Como queremos que o trinômio seja um quadrado perfeito, basta pensar da seguinte maneira:

ax^2 + bx + c \equiv (mx+n)^2

Veja que essa é a condição mais geral que podemos ter, partindo do desenvolvimento de um binômio. Deste modo:

ax^2 + bx + c \equiv m^2x^2 + 2mnx + n^2

Teremos o seguinte sistema:

\left\{ \begin{array}{l} a = m^2 \\ b = 2 mn \\ c = n^2 \\ \end{array} \right.

Da segunda equação, veja que b^2 = 4m^2n^2, portanto, b = 4ac. Daí vemos que uma condição simples é b = 0 com, por exemplo, c = 0, mas implicando não termos um trinômio propriamente dito, mas um monômio…

Continuando a análise, é possível verificar que, tanto a quanto c, se não nulos, devem ser positivos, pois sendo reais, são os quadrados de m e n respectivamente.

Podemos tirar a prova real, veja que a  x^2 \pm 2\sqrt{ac} x + c  \equiv (\sqrt{a}x \pm \sqrt{c} )^2, com as condições vistas anteriormente. Assim, como vimos, a condição é que se tenha a \cdot c \ne 0, a,c > 0 e b^2 = 4ac, com a,b,c \in \mathbb{R}.

Espero ter ajudado e até!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Qual a posição do número?

Olá leitor!

Hoje trazemos mais uma questão trazida por uma leitora. Vamos ao enunciado:

Formados e dispostos em ordem crescente, os números que se obtém, permutando-se os algarismos 2, 3, 4, 8 e 9, que lugar ocupa o número 43892?

Stephanie Wenceslau

Bom, esta é uma mera questão de permutações simples em que, uma organização do raciocínio resolve o problema. Veja que, temos cinco posições para preencher com cinco algarismos. Como eles devem estar em ordem crescente:

  • Se o primeiro algarismo for o 2 ou o 3, não importam os demais, sempre teremos um número menor que 43892. Então temos um total de 2 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 48 números.
  • Se o primeiro algarismo for o 4 e o seguinte for o 2, não importam os demais, sempre teremos um número menor que 43892. Então temos um total de 1 \cdot 1 \cdot 3 \cdot 2 \cdot 1 = 6 números.
  • Se o primeiro algarismo for o 4 e o seguinte for o 3, o próximo deve ser o 2 e não importam os demais, pois sempre teremos um número menor que 43892. Então temos um total de 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 2 números.
  • Se o primeiro algarismo for o 4, o segundo for o 3 e o terceiro for o 8 o próximo deve ser o 2 e o último o 9, havendo apenas uma possibilidade.

Até aqui temos 48 + 6 + 2 + 1 = 57 números. Portanto, o próximo número é o 58\textsuperscript{\d o}.

Espero ter ajudado!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

AFA: Números Binomiais em P.A.

Sejam bem vindos!

Mais uma dúvida trazida por um leitor e, hoje, envolvendo os números binomiais e as progressões aritméticas, vulgarmente conhecidas como P.A.’s. Então vamos ao enunciado:

(AFA) Os coeficientes do quinto, sexto e sétimo termos do desenvolvimento de (1+x)^n estão em progressão aritmética. Se n \leq 13, então o valor de 2n + 1 é:

a) 7

b) 13

c) 15

d) 27

Enviado por Arthur Pereira

Vamos lembrar que o termo geral do desenvolvimento do binômio (x+a)^n é:

T_{p+1} = {n \choose p} x^{n - p} a^p

No nosso caso x = 1 e a = x. Assim, temos para o quinto termo ficamos com:

T_5 = {n \choose 4} 1^{n - 4} x^4

Para o sexto e o sétimo, respectivamente:

T_6 = {n \choose 5} 1^{n - 5} x^5

E

T_7 = {n \choose 6} 1^{n - 6} x^6

Então, {n \choose 4}, {n \choose 5} e {n \choose 6} formam a nossa P.A, nesta ordem. Portanto, sabemos que existe a relação:

2{n \choose 5} = {n \choose 4} + {n \choose 6}

Desenvolvendo cada número binomial, podemos escrever:

2 \cdot \frac{n!}{5!(n-5)!} = \frac{n!}{4!(n-4)!} + \frac{n!}{6!(n-6)!}

Então:

2 \cdot \frac{n!}{5 \cdot 4!(n-5)(n-6)!} = \frac{n!}{4!(n-4)(n-5)(n-6)!} + \frac{n!}{6 \cdot 5 \cdot 4!(n-6)!}

Dividindo todas as parcelas por \frac{n!}{4!(n-6)!} teremos a seguinte expressão:

\frac{2}{5(n-5)} = \frac{1}{(n-4)(n-5)} + \frac{1}{30}

Fazendo o mínimo múltiplo comum:

\frac{12(n-4)}{30(n-4)(n-5)} = \frac{30}{30(n-4)(n-5)} + \frac{(n-4)(n-5)}{30(n-4)(n-5)}

Desenvolvendo:

12n - 48 = 30 + n^2 - 9n + 20

Finalmente chegamos à n^2 - 21n + 98 = 0, cujas raízes são n = 14 e n = 7. Do enunciado sabemos que n \leq 13, portanto, n = 7. Como queremos 2n + 1, sabemos que o resultado final é 15. Opção C.

Como observação adicional, vale perceber que se tivéssemos simplesmente desenvolvido o triângulo de Pascal até a linha 7, chegaríamos ao mesmo resultado por observação.

É isso.

Até

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]