Olá leitores, estamos de volta com mais uma LIVE. Nesta, trazemos todas as questões da UERJ integralmente resolvidas para vocês. Vamos aos links da semana:
A live de ontem foi TOP! Resolvi vários problemas de gráficos.
E, se você não quer perder a próxima, pode entrar no meu grupo do WhatsApp, clicando AQUI.
Você vai receber as listas semanalmente 1 ou 2 dias antes da LIVE para poder usar como um simulado, se quiser. Depois, só conferir a resolução ao vivo.
Na live desta semana, resolvemos exercícios de introdução ao estudo da eletricidade, falando sobre os processos de eletrização e também sobre os princípios básicos da eletrostática.
Você pode baixar a lista de exercícios usada na live AQUI.
Para receber as listas semanalmente você pode entrar em nosso grupo no WhatsApp clicando AQUI.
Quer treinar um pouco os conceitos básicos de Geometria Plana e algumas propriedades de matrizes e de suas operações?
Então dá uma boa olhada nesse vídeo!
Você pode pegar as questões usadas neste material clicando AQUI.
Entre em nosso grupo no WhatsApp e receba semanalmente estas listas. Que são sempre corrigidas nas lives às quartas-feiras. Para entrar no grupo, clica AQUI.
A imagem com todas as questões resolvidas na live está logo abaixo.
Recebi agora a prova da Escola Naval de 2021/2022 e vou começar a colocar aqui os meus gabaritos. Vou atualizando aos poucos. Você pode sempre voltar nesse link, caso queira.
IMPORTANTE: As questões não estão na ordem em que aparecem na prova, pois estou dando preferência as que vou resolvendo primeiro. Vamos lá!
Seja a sequência abaixo definida por uma lei de recorrência de 3ª ordem. Cada termo dessa sequência (do quarto termo em diante) é uma combinação linear dos três termos imediatamente anteriores.
A soma do sétimo com o oitavo termo é igual a
a)
b)
c)
d)
e)
Como dito no enunciado, cada termo segue a seguinte lei de formação:
Para :
Para :
Para :
Tirando os termos dados da sequência, teremos o sistema:
Somando as duas últimas equações, teremos e, duplicando a segunda equação e, somando com a primeira, chegamos à . Temos então o sistema a seguir:
Isolando na segunda, ficamos com e, então:
Consequentemente e .
Assim o termo geral fica:
O sétimo termo é e o oitavo termo é . Deste modo . Opção D.
Anúncios
No , a equação , com as constantes , podem representar um plano. Assinale a opção que esboça a representação geométrica dos planos no sistema linear abaixo
a) Dois planos paralelos e distintos e um secante a eles
b) Planos concorrentes em um ponto
c) Planos secantes dois a dois
d) Planos concorrentes em uma reta
e) Dois planos coincidentes e um secante a eles
Primeiro precisamos reescrever o sistema com segue:
Agora vamos escrever a matriz completa do sistema e escaloná-la:
Multiplicamos a primeira linha por e somamos com a segunda, e multiplicamos a primeira linha por e somamos com a terceira linha:
Veja que as duas últimas linhas são iguais representando planos coincidentes. O outro plano concorre com estes dois, haja vista que seus vetores normais não são paralelos. Veja:
O primeiro plano tem vetor e o segundo (e terceiro) tem .
Chegamos à opção E.
Anúncios
Todos os pontos da figura abaixo podem ser representados sob a forma matricial .
Ao aplicarmos uma transformação linear , geramos uma nova figura na qual seus pontos são representados sob a forma . Sendo assinale a opção que apresenta a figura formada pela transformação .
Vamos, em primeiro lugar, substituir os pontos dados na transformação linear:
Ficamos com .
Olhando para a figura dada, vamos fazer uma tabela com os pontos da figura original. Estes pontos, por meio de suas coordenadas nos darão os novos pontos de coordenadas . Veja:
Para ficar bacana, vou marcar os pontos no Geogebra:
Assim chegamos à opção C.
Anúncios
Considere um círculo de centro circunscrito a um triângulo com ângulo obtuso em . O raio forma um ângulo de com a altura e intercepta em um ponto . O prolongamento da bissetriz do ângulo intercepta em um ponto e a circunferência em um ponto , conforme figura abaixo.
Assinale a opção que apresenta a área do quadrilátero sabendo que e cm.
a)
b)
c)
d)
e)
No triângulo podemos calcular a :
No mesmo triângulo podemos calcular :
Podemos agora usar o teorema da bissetriz interna no triângulo :
Substituindo os valores:
Daí:
Desenvolvendo:
Finalmente temos .
No triângulo temos , em que é o raio do círculo. Aplicando a lei dos cossenos:
Sabemos que , pois o triângulo é isósceles de base e . Assim:
Chegamos assim a . Agora partimos para o calculo da área:
Teremos e . Ficamos com:
Fazendo as contas teremos . Ufa! Ê…, contarada!!!! Opção E.