Escola Naval: Matemática 2021/2022 (Prova Amarela)

Olá leitor.

Recebi agora a prova da Escola Naval de 2021/2022 e vou começar a colocar aqui os meus gabaritos. Vou atualizando aos poucos. Você pode sempre voltar nesse link, caso queira.

IMPORTANTE: As questões não estão na ordem em que aparecem na prova, pois estou dando preferência as que vou resolvendo primeiro. Vamos lá!

Seja a sequência abaixo definida por uma lei de recorrência de 3ª ordem. Cada termo dessa sequência (do quarto termo em diante) é uma combinação linear dos três termos imediatamente anteriores. (2,-1,1,6,3,-1,\ldots)

A soma do sétimo com o oitavo termo é igual a

a) 4

b) 5

c) 15

d) 23

e) 24

Como dito no enunciado, cada termo a_n segue a seguinte lei de formação:

a_n = A \cdot a_{n-1} + B \cdot a_{n-2} + C \cdot a_{n-3} \qquad n \in \mathbb{N}, n \geq 4

Para n = 4:

A \cdot a_3 + B \cdot a_2 + C \cdot a_1 = a_4

Para n = 5:

A \cdot a_4 + B \cdot a_3 + C \cdot a_2 = a_5

Para n = 6:

A \cdot a_5 + B \cdot a_4 + C \cdot a_3 = a_6

Tirando os termos dados da sequência, teremos o sistema:

\left\{ \begin{array}{lll} A - B + C = 6 \\ 6A + B - C = 3 \\ 3A + 6B + C = -1 \\ \end{array} \right.

Somando as duas últimas equações, teremos 9A + 7B = 2 e, duplicando a segunda equação e, somando com a primeira, chegamos à 13A + B = 12. Temos então o sistema a seguir:

\left\{ \begin{array}{lll} 9A + 7B = 2 \\ 13A + B = 12 \\ \end{array} \right.

Isolando B na segunda, ficamos com B = 12 - 13A e, então:

9A + 7(12 - 13A) = 2 \Rightarrow 9A - 91 A = 2 - 84A \Rightarrow A = 1

Consequentemente B = -1 e C = 2.

Assim o termo geral fica:

a_n = a_{n-1} - a_{n-2} + 2a_{n-3}

O sétimo termo é a_7 = a_6 - a_5 + 2a_4 = (-1) + (-1) \cdot 3 + 2 \cdot 6 = 8 e o oitavo termo é a_8 = a_7 - a_6 + 2a_5 = 8 + (-1) \cdot (-1) + 2 \cdot 3 = 15. Deste modo a_7 + a_8 = 8 +15 = 23. Opção D.

Anúncios

No \mathbb{R}^3, a equação ax+by + cz + d = 0, com as constantes a,b,c,d \in \mathbb{R}, podem representar um plano. Assinale a opção que esboça a representação geométrica dos planos no sistema linear abaixo

\left\{ \begin{array}{l} 2x-y + 3z - 5 = 0 \\ -5x + 3y -4z + 6 = 0 \\ -x + y +2z  - 4 = 0 \\ \end{array}\right.

a) Dois planos paralelos e distintos e um secante a eles

b) Planos concorrentes em um ponto (P)

c) Planos secantes dois a dois

d) Planos concorrentes em uma reta (r)

e) Dois planos coincidentes e um secante a eles

Primeiro precisamos reescrever o sistema com segue:

\left\{ \begin{array}{l} 2x - y  + 3z = 5 \\ -5x + 3y - 4z = -6 \\ -x + y + 2z = 4 \\ \end{array} \right.

Agora vamos escrever a matriz completa do sistema e escaloná-la:

\left\vert \begin{array}{rrr | r} 2 & -1 & 3 & 5 \\ -5 & 3 &- 4 & -6 \\ -1 & 1  & 2 & 4 \\ \end{array} \right\vert

Multiplicamos a primeira linha por 3 e somamos com a segunda, e multiplicamos a primeira linha por 1 e somamos com a terceira linha:

\left\vert \begin{array}{rrr | r} 2 & -1 & 3 & 5 \\ 1 & 0 & 5 & 9 \\ 1 & 0  & 5 & 9 \\ \end{array} \right\vert

Veja que as duas últimas linhas são iguais representando planos coincidentes. O outro plano concorre com estes dois, haja vista que seus vetores normais não são paralelos. Veja:

\left\{ \begin{array}{l} 2x - y  + 3z = 5 \\ x + 5z = 9 \\ x + 5z = 9 \\ \end{array} \right.

O primeiro plano tem vetor \vec{n}_1 = (2,-1,3) e o segundo (e terceiro) tem \vec{n}_2 = (1,0,5).

Chegamos à opção E.

Anúncios

Todos os pontos P(a,b) da figura abaixo podem ser representados sob a forma matricial P = \left(\begin{array}{c} a \\ b \end{array}\right).

Ao aplicarmos uma transformação linear A \cdot P = Q, geramos uma nova figura na qual seus pontos são representados sob a forma Q = \left( \begin{array}{c} c \\ d \end{array} \right). Sendo A = \left( \begin{array}{rr} -2 & 1 \\ 3 & - 1 \\ \end{array} \right) assinale a opção que apresenta a figura formada pela transformação A \cdot P.

Vamos, em primeiro lugar, substituir os pontos dados na transformação linear:

\left( \begin{array}{rr} -2 & -1 \\ 3 & -1 \\ \end{array} \right) \cdot \left( \begin{array}{c} a \\ b \end{array} \right) = \left( \begin{array}{c} c \\ d \end{array} \right)

Ficamos com \left( \begin{array}{c} c \\ d \end{array} \right) = \left( \begin{array}{c} -2a + b \\ 3a + b \end{array} \right).

Olhando para a figura dada, vamos fazer uma tabela com os pontos da figura original. Estes pontos, por meio de suas coordenadas nos darão os novos pontos de coordenadas (c,d). Veja:

\begin{array}{c || c|c|c|c} \textrm{Pontos} &a&b&c=-2a+b&d = 3a+b \\ \hline A(1,0) & 1 & 0 & -2 & 3 \\ \hline B(\frac{1}{2},\frac{1}{2}) & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 2 \\ \hline C(2,\frac{1}{2}) & 2 & \frac{1}{2} & -\frac{7}{2} & \frac{13}{2} \\ \hline D(1,1) & 1 & 1 & 1 & 4 \\ \hline E(2,2) & 2 & 2 & -2 & 8 \\ \hline F(3,\frac{1}{2}) & 3 & \frac{1}{2} & -\frac{11}{2} & \frac{19}{2} \\ \hline G(\frac{5}{2},0) & \frac{5}{2} & 0 & -5 & \frac{15}{2} \\\end{array}

Para ficar bacana, vou marcar os pontos (c,d) no Geogebra:

Assim chegamos à opção C.

Anúncios

Considere um círculo de centro O circunscrito a um triângulo ABC com ângulo obtuso em A. O raio AO forma um ângulo de 30^\circ com a altura AH e intercepta BC em um ponto E. O prolongamento da bissetriz do ângulo A intercepta BC em um ponto F e a circunferência em um ponto G, conforme figura abaixo.

Assinale a opção que apresenta a área do quadrilátero FEOG sabendo que AG = 4\sqrt{2} e AH = \sqrt{2\sqrt{3}} cm.

a) 6(3+\sqrt{2})\,\textrm{cm}^2

b) 3(6-\sqrt{3})\,\textrm{cm}^2

c) 2(3+\sqrt{6})\,\textrm{cm}^2

d) 3(6+\sqrt{3})\,\textrm{cm}^2

e) 6(2-\sqrt{3})\,\textrm{cm}^2

No triângulo AEH podemos calcular a \tan 30^\circ:

\tan = \frac{HE}{AH} \Rightarrow HE = \sqrt[4]{12} \cdot \frac{\sqrt{3}}{3}

No mesmo triângulo podemos calcular \textrm{sen}\,30^\circ:

\textrm{sen}\,30^\circ = \frac{HE}{AE} \Rightarrow AE = 2 \cdot HE \Rightarrow AE = 2 \cdot \frac{\sqrt[4]{12} \cdot \sqrt{3}}{3}

Podemos agora usar o teorema da bissetriz interna no triângulo AEH:

\frac{AH}{HF} = \frac{AE}{FE}

Substituindo os valores:

\frac{\sqrt[4]{12}}{ \frac{\sqrt[4]{12} \cdot \sqrt{3}}{3} - FE} = \frac{2 \cdot \sqrt[4]{12} \cdot \sqrt{3}}{3FE}

Daí:

3FE = 2\sqrt{3}(\frac{\sqrt[4]{12} \cdot \sqrt{3}}{3} - FE)

Desenvolvendo:

3FE + 2\sqrt{3}FE = 2\sqrt[4]{12}

Finalmente temos FE = \frac{2}{3} \sqrt[4]{12}(2\sqrt{3}-3).

No triângulo AOG temos AO = OG = R, em que R é o raio do círculo. Aplicando a lei dos cossenos:

AG^2 = R^2 + R^2 - 2 \cdot R \cdot R \cdot \cos A\widehat{O}G

Sabemos que A\widehat{O}G = 150^\circ, pois o triângulo AOG é isósceles de base AG e G\widehat{A}O = A\widehat{G}O = 15^\circ. Assim:

(4\sqrt{2})^2 = 2R^2 - 2R^2 \cdot (-\frac{\sqrt{3}}{2})

Chegamos assim a R^2 = 32(2-\sqrt{3}). Agora partimos para o calculo da área:

(FEOG) = (AOG) - (AFE)

Teremos (AOG) = \frac{1}{2} \cdot AO \cdot OG \cdot \textrm{sen}\,(A\widehat{O}G) e (AFE) = \frac{1}{2} \cdot FE \cdot AH. Ficamos com:

(FEOG) = \frac{1}{2} \cdot R^2 \cdot \textrm{sen}\,150^\circ - \frac{1}{2} \cdot  \frac{2}{3}\cdot  \sqrt[4]{12}(2\sqrt{3}-3) \cdot \sqrt[4]{12}

Fazendo as contas teremos (FEOG) = 6(2-\sqrt{3}). Ufa! Ê…, contarada!!!! Opção E.

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]

Prova da EEAr Matemática 2019/2020 com Soluções

Neste último domingo (2/6/2019) ocorreu o primeiro concurso da EEAr de 2019. Seguem as imagens da primeira prova da EEAr de matemática de 2019 para acesso em 2020.

E agora, as soluções:

E aí, o que acharam? Divirtam-se e estejam a vontade para fazer comentários e/ou correções.

Até mais.

EsPCEx 2018/2019: Matemática Resolvida

Estamos de volta… talvez um pouco tardiamente, mas estamos aqui. E, hoje, trazemos as questões de matemática da EsPCEx 2018/2019 resolvidas. Veja as questões nas imagens abaixo.

Você pode ver as questões de física na página do Facebook do nosso parceiro Física Lacradora do meu camarada Andre Faria.

Um grande abraço e bons estudos.

 

UERJ: Soluções da Prova de Matemática do 2º EQ

Olá leitores,

estamos aqui para publicar e divulgar a nossa solução das questões de matemática do segundo exame de qualificação da UERJ do vestibular de 2018/2019.

Deixo aqui as imagens correspondentes as questões, bem como, também um arquivo em .pdf e também a prova.

O link contendo o arquivo em .pdf da prova/gabarito  aplicada hoje (16/9/2018): 2019_2eq_prova | 2019_2eq_gabarito.

O arquivo com as soluções em .pdf: UERJ2019-2EQ

Nosso parceiro André Faria da página Física Lacradora no Facebook vai disponibilizar em breve as soluções de física, português e química também. A página fica neste link.

Bons estudos e boa semana.

EsPCEx 2016: GABARITO Preliminar da Prova de Física

Olá amigos,

recebi ontem de um candidato fotos da prova de física da EsPCEx 2016 e, como a ansiedade é grande para ver o que errou ou acertou, estou disponibilizando o gabarito que fiz ontem mesmo para a prova.

Em breve, este gabarito estará junto com tanto outros em nossa página de soluções.

Abraço e sucesso.

@LSBar

Aprendizes-Marinheiros: Todas as provas de Matemática Solucionadas

Olá alunos,

solucionamos a última (a mais recente) prova de matemática de Aprendizes-Marinheiros e adicionamos ao arquivo de provas já disponível aqui no site. Veja no link abaixo ou vá até a guia soluções.

EAM – Matemática de 2004 a 2016

Bons estudos e sucesso!
@LSBar – Founder

Aprendizes-Marinheiros de 2004 a 2015 resolvida!

Olá alunos e assinantes, com a proximidade da prova da EAM, muitas pessoas têm procurado a solução das provas de matemática do concurso de admissão às escolas de aprendizes-marinheiros.

Resolvemos então, voltar a disponibilizar o arquivo completo com as provas resolvidas de matemática de 2004 a 2015. Clique no link abaixo para ver o arquivo.

Aprendizes_Marinheiros_Matematica_2004_2015

Pode comemorar e voltar a estudar.

Um grande abraço e sucesso!