Olá caros alunos e estimados leitores. Segue uma pequena lista com 10 problemas de física e suas respectivas soluções.
Ela serve de base para você que está iniciando seus estudos na cinemática escalar, haja vista que este é um tema presente, se não em todos, em praticamente todos os concursos nos quais a física é uma das disciplinas.
Veja abaixo a lista de exercícios com as suas dez questões:
Neste post trazemos uma das questões de nosso simulado diagnóstico. A pergunta em questão é a número 7. Este tipo de problema aparece muito em provas dos Colégios Militares e em Olimpíadas de Matemática.
O simulado diagnóstico serve essencialmente para entender qual o nível de conhecimento dos alunos que estão conosco. Feito em várias etapas de nossos cursos, este tipo de avaliação traz informações valiosas sobre a bagagem anterior ao próprio curso. Isto nos permite adequar a ementa do curso a realidade do aluno.
Se você quiser ver o arquivo original da prova de matemática, veja a seguir e, caso queira baixa-la, clique no link logo abaixo:
E aí? O que achou das questões? E do nível geral da prova? Tem dúvida em alguma outra questão deste diagnóstico?
E você, por acaso, já tinha visto um problema deste tipo em algum concurso (militar ou não)? Conte-nos nos comentários a seguir e acompanhe-nos por aqui ou no YouTube e nas redes sociais.
Olá, estamos de volta trazendo a solução do problema da semana #8. O problema foi adaptado do livro The Standford Mathematics Problem Book – Hints and Solutions do G. Polya e J. Kilpatrick.
Este é um problema clássico de sistemas de equações que seguem um determinado padrão de repetição. Isto é muito cobrado principalmente pelos concursos do Colégio Naval, Escola Naval, EFOMM que, repare, todos são da Marinha do Brasil (nada é por acaso!). Segue o enunciado:
Encontrar valores , , e , tais que:
E calcule o valor de .
Vamos então falar da solução. Perceba que é possível solucionar isolando cada incógnita até que se tenha apenas uma equação com uma incógnita. Mas isso levaria muito mais tempo. Há um caminho mais simples. Basta somar todas as equações membro a membro e ficamos com:
Daí, basta perceber, da primeira equação, que , portanto . Na segunda equação , logo . Tendo e , na terceira equação teremos , Finalmente, . Então:
Fica então a dica: sistemas nos quais cada equação é semelhante às demais, omitindo apenas uma (ou mais variáveis) de forma similar basta verificar se é possível adicionar (ou multiplicar) as equações e obter um “atalho”.
Resolveram este problema:
Alef
Gustavo
Arthur Rocha
@mariopersico_
Ygor Farias
Iuri Henrique
Davi do Nascimento Teles Barata
Micael França
Ygor Gabriel
Listagem de problemas resolvidos até agora:
(3) Ygor Gabriel
(2) Yasmim Silva
(2) Ygor Farias
(1) Arthur Rocha
(1) Alef
(1) Iuri Henrique
(1) Gustavo
(1) @mariopersico_
(1) Davi do Nascimento Teles Barata
(1) Micael França
Vamos pra cima, em breve, o problema da próxima semana. Continuem estudando, até mais. [LSB]
Recebi agora a prova da Escola Naval de 2021/2022 e vou começar a colocar aqui os meus gabaritos. Vou atualizando aos poucos. Você pode sempre voltar nesse link, caso queira.
IMPORTANTE: As questões não estão na ordem em que aparecem na prova, pois estou dando preferência as que vou resolvendo primeiro. Vamos lá!
Seja a sequência abaixo definida por uma lei de recorrência de 3ª ordem. Cada termo dessa sequência (do quarto termo em diante) é uma combinação linear dos três termos imediatamente anteriores.
A soma do sétimo com o oitavo termo é igual a
a)
b)
c)
d)
e)
Como dito no enunciado, cada termo segue a seguinte lei de formação:
Para :
Para :
Para :
Tirando os termos dados da sequência, teremos o sistema:
Somando as duas últimas equações, teremos e, duplicando a segunda equação e, somando com a primeira, chegamos à . Temos então o sistema a seguir:
Isolando na segunda, ficamos com e, então:
Consequentemente e .
Assim o termo geral fica:
O sétimo termo é e o oitavo termo é . Deste modo . Opção D.
Anúncios
No , a equação , com as constantes , podem representar um plano. Assinale a opção que esboça a representação geométrica dos planos no sistema linear abaixo
a) Dois planos paralelos e distintos e um secante a eles
b) Planos concorrentes em um ponto
c) Planos secantes dois a dois
d) Planos concorrentes em uma reta
e) Dois planos coincidentes e um secante a eles
Primeiro precisamos reescrever o sistema com segue:
Agora vamos escrever a matriz completa do sistema e escaloná-la:
Multiplicamos a primeira linha por e somamos com a segunda, e multiplicamos a primeira linha por e somamos com a terceira linha:
Veja que as duas últimas linhas são iguais representando planos coincidentes. O outro plano concorre com estes dois, haja vista que seus vetores normais não são paralelos. Veja:
O primeiro plano tem vetor e o segundo (e terceiro) tem .
Chegamos à opção E.
Anúncios
Todos os pontos da figura abaixo podem ser representados sob a forma matricial .
Ao aplicarmos uma transformação linear , geramos uma nova figura na qual seus pontos são representados sob a forma . Sendo assinale a opção que apresenta a figura formada pela transformação .
Vamos, em primeiro lugar, substituir os pontos dados na transformação linear:
Ficamos com .
Olhando para a figura dada, vamos fazer uma tabela com os pontos da figura original. Estes pontos, por meio de suas coordenadas nos darão os novos pontos de coordenadas . Veja:
Para ficar bacana, vou marcar os pontos no Geogebra:
Assim chegamos à opção C.
Anúncios
Considere um círculo de centro circunscrito a um triângulo com ângulo obtuso em . O raio forma um ângulo de com a altura e intercepta em um ponto . O prolongamento da bissetriz do ângulo intercepta em um ponto e a circunferência em um ponto , conforme figura abaixo.
Assinale a opção que apresenta a área do quadrilátero sabendo que e cm.
a)
b)
c)
d)
e)
No triângulo podemos calcular a :
No mesmo triângulo podemos calcular :
Podemos agora usar o teorema da bissetriz interna no triângulo :
Substituindo os valores:
Daí:
Desenvolvendo:
Finalmente temos .
No triângulo temos , em que é o raio do círculo. Aplicando a lei dos cossenos:
Sabemos que , pois o triângulo é isósceles de base e . Assim:
Chegamos assim a . Agora partimos para o calculo da área:
Teremos e . Ficamos com:
Fazendo as contas teremos . Ufa! Ê…, contarada!!!! Opção E.
Estamos de volta… talvez um pouco tardiamente, mas estamos aqui. E, hoje, trazemos as questões de matemática da EsPCEx 2018/2019 resolvidas. Veja as questões nas imagens abaixo.
Você pode ver as questões de física na página do Facebook do nosso parceiro Física Lacradora do meu camarada Andre Faria.
Nosso parceiro André Faria da página Física Lacradora no Facebook vai disponibilizar em breve as soluções de física, português e química também. A página fica neste link.
recebi ontem de um candidato fotos da prova de física da EsPCEx 2016 e, como a ansiedade é grande para ver o que errou ou acertou, estou disponibilizando o gabarito que fiz ontem mesmo para a prova.
Em breve, este gabarito estará junto com tanto outros em nossa página de soluções.
Olá alunos e assinantes, com a proximidade da prova da EAM, muitas pessoas têm procurado a solução das provas de matemática do concurso de admissão às escolas de aprendizes-marinheiros.
Resolvemos então, voltar a disponibilizar o arquivo completo com as provas resolvidas de matemática de 2004 a 2015. Clique no link abaixo para ver o arquivo.