Problema da Semana #12: solução!

Cartas!

Estamos de volta com o problema da semana. Vamos relembrar o enunciado antes de resolver. Segue:

Sendo x + \frac{1}{x} = \sqrt{2}, calcular o valor de x^{2021} + \frac{1}{x^{2021}}.

Vamos à solução proposta pelo grande mentor e mestre Paulo de Sousa Sobrinho. Sabemos que:

x + \frac{1}{x} = \sqrt{2}

Daí, elevando ambos os membros ao quadrado, teremos:

(x + \frac{1}{x})^2 = (\sqrt{2})^2 \Leftrightarrow x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 2 \Leftrightarrow x^2 + \frac{1}{x^2} = 0

O que nos leva a:

x^2 = -\frac{1}{x^2} \Leftrightarrow x^4 = -1

Sabemos que x^{2021} = x^{2020} \cdot x e como 2020 = 4 \cdot 505, podemos fazer (x^4)^{505} \cdot x e teremos:

x^{2021} + \frac{1}{x^{2021}} = (x^4)^{505} \cdot x + \frac{1}{(x^4)^{505} \cdot x} = (-1) \cdot x + \frac{1}{(-1) \cdot x} = - (x + \frac{1}{x}) = - \sqrt{2}

Esta é a solução proposta por nosso grande mestre Jaiminho.. ops, Paulinho! Vou propor uma nova solução em vídeo, um pouco menos elegante e, talvez…, um pouquinho mais longa, porém menos sofisticada.

Menção honrosa:

  • Ygor Farias

Listagem de problemas resolvidos até agora:

  • (4) Micael França
  • (3) Ygor Gabriel
  • (2) Yasmim Silva
  • (2) Ygor Farias
  • (2) Arthur Rocha
  • (2) Mario Persico
  • (2) Iuri Henrique
  • (1) Alef
  • (1) Lucca Gabriel
  • (1) Gustavo
  • (1) Lucas Lopes
  • (1) Davi do Nascimento Teles Barata
  • (1) Enzo Botarelli

Até a próxima questão.

[LSB]

Veja nosso site de camisetas: http://reserva.ink/equilateral

Problema da Semana #12: Potências

Senhor.

Vamos a mais um problema da semana, desta vez proposto pelo ilustríssimo mentor Paulo de Sousa Sobrinho, mais conhecido por Paulinho. Segue o enunciado:

Sendo x + \frac{1}{x} = \sqrt{2}, calcular o valor de x^{2021} + \frac{1}{x^{2021}}.

Agora é com você , mãos a obra e nos vemos em breve, na próxima solução.

Até lá.

[LSB]

Somas de Newton: uma Grande Ajuda!!!

Olá leitor.

Hoje trazemos um problema que envolve um sistema de equações não lineares e que, a princípio, parece fácil, mas na realidade, envolve métodos mais sofisticados que simplesmente substituir uma equação na outra. Veja o problema a seguir:

Sejam x, y e z números complexos que satisfazem o sistema de equações abaixo:

\left\{\begin{array}{l} x + y + z = 7 \\ x^2 + y^2 + z^2 = 25 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{4} \\ \end{array} \right.

O valor da soma x^3 + y^3 + z^3 é:

a) 210

b) 235

c) 250

d) 320

e) 325

Enviada por Matheus

Podemos inicialmente pensar em um polinômio P(n) tal que x, y e z sejam exatamente suas raízes e seja escrito como:

P(n) = a_3n^3 + a_2n^2 + a_1n + a_0

Das relações de Girard e do sistema dado chegamos a:

x + y + z = -\frac{a_2}{a_3} \Rightarrow -\frac{a_2}{a_3} = 7 \Rightarrow a_2 = -7a_3

Alem disso, sabendo que (x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+xz), portanto:

(7)^2 = 25 + 2 \cdot \frac{a_1}{a_3} \Rightarrow \frac{a_1}{a_3} = 12 \Rightarrow a_1 = 12a_3

Da última equação do sistema:

\frac{xy+xz+yz}{xyz} = \frac{1}{4} \Rightarrow \frac{\frac{a_1}{a_3}}{-\frac{a_0}{a_3}} = \frac{1}{4} \Rightarrow a_0 = -4a_1

Ou seja a_0 = 4 \cdot (12 a_3) \Rightarrow a_0 = -48a_3. Finalmente, podemos usar as somas de Newton:

a_3S_3 + a_2S_2+a_1S_1+a_0S_0 = 0

Teremos:

a_3 \cdot S_3 + (-7a_3)\cdot 25 + (12a_3)\cdot 7 + (-48a_3)\cdot 3 = 0

Como a_3 \ne 0, temos:

S_3 - 175 + 84 - 144 = 0 \Rightarrow S_3 = 235

Chegando à opção B.

Como observação, não nos estendemos sobre as somas de Newton, mas o faremos em momento oportuno!!!

Até a próxima!

Anúncios

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE:

https://apoia.se/mentor

— Nos seguindo: 

http://www.instagram.com/curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Apoiadores:

Edson Pereira Barros

Até!

[LSB]