Mais de 500 Exercícios da EEAr!

Olá leitores,

por mais que eu já tenha falado aqui, vou reforçar: nunca paramos de desenvolver materiais. E vamos, a partir de agora, continuar trazendo, porém de forma mais incisiva e intensa, ou seja, muito mais materiais. Este é apenas um deles.

Neste material, você encontra mais de 500 questões de matemática da EEAr, quase todas com gabarito! Prometo que, em breve, colocaremos mais e mais questões, até que todas as questões de 2000 a 2021 estejam neste material, com gabarito. Logo essa é uma versão provisória, mas que você já pode ir usando. Clique abaixo e divirta-se:

Espero, de verdade, que isto te ajude a alcançar seus objetivos!

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE: https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Entre em nosso canal no Telegram: https://t.me/cursomentor

Até!

[LSB]

Anúncios

Um Simulado Modelo EEAr

Olá leitores,

segue um pequeno simulado de matemática no nível da EEAr. Depois de fazerem as questões, podem dar uma olhada no gabarito das questões no arquivo deixado aqui.

Para fazer o simulado clique no link a seguir:

SIMULADO 1 — EEAr

Como disse, depois que fizer, veja as questões a seguir e seus gabaritos:

Minha iniciativa é GRATUITA.

Você pode AJUDAR:

— Doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

— Pelo APOIA SE: https://apoia.se/mentor

— Nos seguindo no instagram @curso_mentor_oficial

Mas, claro, fique a vontade, qualquer ajuda é bem vinda! 

E a melhor ajuda que você pode dar é GRÁTIS, DE GRAÇA, 0800: só basta DIVULGAR esta iniciativa!

Até!

[LSB]

Coloque seu e-mail abaixo para ser avisado de novas postagens:

Anúncios

Matrizes Inversas: Use a Definição!

Olá pessoal, hoje quero falar um pouco sobre a matriz inversa. Mas, antes de mostrar a utilização da definição pra resolver um exercício, vamos relembrar o que significa a inversão de uma matriz.

Vamos considerar que A, B e I_n são duas matrizes quadradas de ordem n e a matriz identidade de ordem n, respectivamente. Então:

A \cdot B = B \cdot A = I_n

A matriz B é chamada de matriz inversa de A e podemos escrever B = A^{-1}. Assim:

A \cdot A^{-1} = A^{-1} \cdot A = I_n

Com isso, podemos mostrar que a inversa de A é única, mas isso vai ficar pra depois. Vamos focar, por enquanto, no que interessa.

O que queremos verificar é o seguinte:

Se conhecemos as matrizes quadradas A e B, de ordem n, tais que A \cdot X = B, quem é a matriz X que satisfaz esta equação?

Bom, como conhecemos a matriz A, sabemos como obter sua inversa; logo, podemos fazer:

A^{-1} \cdot A \cdot X = A^{-1} \cdot B

Ou seja, multiplicamos toda a equação, pela esquerda, por A^{-1}. Como A^{-1} \cdot A = I_n, da definição de inversa, podemos escrever:

I \cdot X = A^{-1} \cdot B \Rightarrow X = A^{-1} \cdot B

Assim já temos a matriz X, uma vez que basta inverter a matriz A, se ela é conhecida. Tudo bem, mas e o exemplo de aplicação? Veja a imagem a seguir com uma questão do concurso da EsPCEx de 1999/2000.

Essa foi a 25ª questão da prova aplicada em 1999.

Veja que podemos chamar a matriz dos coeficientes de C, a matriz das incógnitas de X e a matriz resultante de R, tendo assim a equação a seguir:

C \cdot X = R

Mas, como já vimos:

C^{-1} \cdot C \cdot X = C^{-1} \cdot R \Rightarrow X = C^{-1} \cdot R

E, de acordo com o enunciado, isto se traduz em:

X = \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[ \begin{array}{rrr} 1 & 1 & 0 \\ 0 & -1 & 2 \\ -1 & 0 & 1 \\ \end{array} \right] \cdot  \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right]

Que podemos resolver facilmente, multiplicando a matriz inversa de C pela matriz coluna R :

X = \left[\begin{array}{c} 1+1+0 \\ 0-1+4 \\ -1+0+2 \end{array} \right] \Rightarrow  \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \left[\begin{array}{c} 2 \\ 3 \\ 1 \end{array} \right]

Como as duas matriz são iguais, teremos x = 2, y = 3 e z = 1, opção E.

E aí, gostou dessa aplicação de matriz inversa?

Segue um vídeo falando um pouco mais sobre operações com matrizes com outro exemplo, porém na EEAr:

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Até!

[LSB]

Pontos Notáveis de um Triângulo: Incentro

Olá, nesta postagem queremos trazer um exemplo de problema que exige o conhecimento, mesmo que básico sobre os principais pontos notáveis do triângulo. Em particular, estamos falando sobre o incentro. Em vez de apenas resolver o problema, queremos falar um pouco sobre este ponto notável, aproveitando como uma revisão básica.

Por definição, o incentro é o ponto de encontro das bissetrizes internas de um triângulo. As bissetrizes internas de um triângulo são segmentos que tem um extremo sendo o vértice do triângulo e o outro vértice sobre o lado do triângulo, ou seja é uma ceviana.

Na figura anterior, no triângulo ABC, \overline{AD}, \overline{BF} e \overline{CE} são cevianas. Se tivermos \alpha = \beta, \varepsilon = \zeta e \delta = \gamma então as três cevianas serão bissetrizes internas.

Uma observação importante aqui: não estamos provando que as três bissetrizes internas concorrem (se interceptam) no mesmo ponto (isto ficará pra outro momento…), mas por ora, vamos admitir que seja verdade, já que, da fato, é.

Assim, feita esta breve observação e “dados nomes aos bois” chamaremos o ponto o G de incentro do triângulo ABC. E, claro, pela própria construção da figura, é intuitivo que o incentro é sempre interno ao triângulo, seja ele acutângulo, retângulo ou obtusângulo.

Por uma questão de simplificação, vamos convencionar que ângulos de mesma cor têm a mesma medida. Sabendo que tangentes comuns traçadas de um mesmo ponto a uma circunferência são iguais, o incentro de um triângulo é o centro do círculo inscrito no mesmo triângulo.

Assim, na figura anterior, os ângulos em laranja são todos retos (valem 90^\circ) e GM = GN = GP = r, em que r é o raio do círculo inscrito, também chamado de incírculo. Fiz essa figura pra que seja percebido que os “pés” das bissetrizes não são, necessariamente, pontos do círculo inscrito.

Esta figura traz várias consequências implícitas. Por exemplo, os triângulos de mesma cor na figura a seguir, são congruentes. Mostrando, por exemplo que AM = AN, CM = CP e BN = BP.

Assim, veja que o incentro está a uma mesma distância de cada um dos lados do triângulo.

Com base nesta figura, só para citar uma propriedade importante, podemos mostrar que AM = \frac{AB + BC + AC}{2} - BC. Como não é nosso foco, fica pra depois. Bom qual nosso foco, no momento então? A relação entre o angulo interno do vértice A e o ângulo B\widehat{G}C na figura a seguir:

Veja que G é o incentro, pois \overline{BF} e \overline{CE} são bissetrizes internas. Assim, teremos as seguintes relações:

\widehat{A} + 2x + 2y = 180^\circ para o triângulo ABC

e também

\widehat{G} + x + y = 180^\circ \Rightarrow x + y = 180^\circ - \widehat{G}

Fica, então, simples de se perceber que:

\widehat{A} + 2(x + y) = 180^\circ \Rightarrow \widehat{A} + 2(180^\circ - \widehat{G}) = 180^\circ

Ou seja:

\widehat{A} = 2\widehat{G} - 180^\circ ou \widehat{G} = \frac{\widehat{A}}{2} + 90^\circ

Vamos então ao problema proposto na EEAr há algum tempo, que trago aqui com uma ligeira adaptação:

(EEAr — Modificada)

Um triângulo ABC tem M com incentro. Se B\widehat{M}C = 3 \cdot B\widehat{A}C, qual o valor de BAC?

a) 15^\circ

b) 18^\circ

c) 24^\circ

d) 36^\circ

Veja que o problema trata exatamente do que acabamos de ver. Como M é incentro, basta fazermos:

B\widehat{A}C = 2B\widehat{M}C - 180^\circ

Assim:

B\widehat{A}C = 2 \cdot (3 \cdot B\widehat{A}C) - 180^\circ \Rightarrow 5 \cdot B\widehat{A}C = 180^\circ \Rightarrow B\widehat{A}C = 36^\circ

Portanto, letra D.

Ah, e aqui está um vídeo sobre todos os pontos notáveis do triângulo.

Espero ter esclarecido um pouco mais sobre o incentro e suas propriedades.

Minha iniciativa é gratuita.

Você pode ajudar doando qualquer quantia via PIX: leonardosantos.inf@gmail.com

Fique a vontade, qualquer ajuda é bem vinda! E a melhor ajuda que você pode dar não custa nada: só basta divulgar esta iniciativa!

Até!

[LSB]

Apostila: Produtos Notáveis (Versão 1.0)

Olá alunos,

aproveitamos a páscoa para sacudir a poeira do teclado e colocar em dia a produção de material. Não podíamos deixar passar a oportunidade de publicar uma apostila que serve principalmente para concursos do ensino fundamental, como Aprendizes-Marinheiros e para concursos tal como a EEAr: Produtos Notáveis: Versão 1.0.

Para conferir vá até Downloads >> Apostilas. Não deixe de conferir também os exercícios de produtos notáveis em Exercícios >> Matemática.

@LSBar – Fundador.