Teorema de Jacobi

Olá pessoal, já ouviram falar do Teorema de Jacobi? Sabe pra que serve? Se sim, ou se não, vamos dar uma olhada nele.

Carl Gustav Jakob Jacobi

Em primeiro lugar, o Teorema de Jacobi diz respeito ao determinante de matrizes quadradas. Vejamos o que ele diz:

Se A_{n \times n} é uma matriz quadrada de ordem n, ao substituir cada elemento a_{pj} da linha p (p \in \{1,2,\ldots,n\}) da matriz A pelos próprios elementos da linha p por elementos a_{qj} da linha q (q \in \{1,2,\ldots,n\} e p \ne q) da matriz multiplicados por uma constante real k o determinante da nova matriz B é idêntico ao determinante de A. Ou seja, vamos admitir, sem perda de generalidade, que p > q, teremos:

\left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} & a_{p2} & a_{p3} & \ldots & a_{pn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert  = \left\vert \begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{q1} & a_{q2} & a_{q3} & \ldots & a_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{p1} + ka_{q1} & a_{p2} + ka_{q2}& a_{p3} + ka_{q3} & \ldots & a_{pn} + ka_{qn} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \ldots & a_{nn} \\ \end{array} \right\vert

Veja que a linha q que foi usada como “base” continuou igual, e substituímos a linha p pelos resultados obtidos com a operação. Vejamos um exemplo simples de uma matriz M de ordem 2:

Exemplo: Calcular o determinante da matriz M = \left[ \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right].

Este é apenas um exemplo simples, mas veja que os números farão com que o processo seja trabalhoso, já que teremos:

\det M = 103 \cdot 150 - 120 \cdot 201 = 15450 - 24120 = -8670

Aplicando o Teorema de Jacobi, poderemos calcular como segue:

\det M = \left\vert \begin{array}{cc} 103 & 120 \\ 201 & 150 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ 201 + (-2) \cdot 103 & 150 + (-2) \cdot 120 \\ \end{array} \right\vert = \left\vert \begin{array}{cc} 103 & 120 \\ -5 & -90 \\ \end{array} \right\vert

O que nos dará:

\det M = 103 \cdot (-90) - (-5) \cdot 120 = -9270 + 600 = -8670

Veja que, apesar de ainda “grandes” a ordem de grandeza dos produtos é muito menor. Vejamos mais um exemplo. Agora com uma matriz muito maior.

Exemplo: Calcule o determinante a seguir: \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert.

Vamos aplicar então o Teorema de Jacobi, para tentar simplificar o cálculo deste determinante. Façamos a nova segunda linha (L_2') como L_2' = L_2 + (-6) \cdot L_1 e a nova terceira linha (L_3') como L_3' = L_3 + (-11) \cdot L_1, assim teremos:

\left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  6 - 6 & 7 - 12 & 8 - 18 & 9 - 24 & 10 - 30 \\ 11 - 11 & 12-22 & 13-33 & 14-44 & 15-55 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert = \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & -10 & -20 & -30 & -40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =

Isto já é suficiente para perceber que o determinante é nulo, pois a terceira linha é proporcional à segunda linha. Mas podemos reaplicar o Teorema de Jacobi. A nova terceira linha L_3'' = (-2) \cdot L_2'+ L_3', veja:

=  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 +0 & -10+10 & -20+20 & -30+30 & -40+40 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert =  \left\vert \begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\  0 & -5 & -10 & -15 & -20 \\ 0 & 0 & 0 & 0 & 0 \\ 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23 & 24 & 25 \\ \end{array} \right \vert

Que é nulo, pois há uma fileira nula. Para conferir, basta aplicar o Teorema de Laplace.

Para saber um pouco mais sobre quem foi Jacobi, clique aqui.

Número de Elementos e Operações com Conjuntos

Olá, bem vindos. Hoje falamos sobre o número de elementos de um conjunto qualquer e falamos sobre o número de elementos da união, da interseção, da diferença, do produto cartesiano e do conjunto das partes de um conjunto. Falamos quando cada um destes é máximo ou mínimo e mostramos como calcular o número de elementos da união de vários conjuntos. Até mais!

Acelerações: Total, Centrípeta e Tangencial

Olá, bem vindos! Hoje falamos sobre a aceleração centrípeta, como ela interfere na velocidade (especificamente em sua direção) e também da aceleração tangencial e como ela interfere no módulo da velocidade. Falamos também como calcular a aceleração total partindo deste ponto de vista! Esperamos que ajude e até breve!

Progressões Geométricas e Geometria Analítica!

Hoje trazemos um problema de progressões geométricas associado à geometria analítica no plano cartesiano. Se você tem uma solução interessante para este problema, não esquece de contar pra nós enviando um email para leonardosantos.inf@gmail.com.

Análise Combinatória e Desigualdade de Médias

Olá, bem vindos! Hoje abordamos um problema de contagem (A.K.A. análise combinatória) e utilizamos a desigualdade de médias para mostrar um interessante resultado! Esperamos que goste! Tem uma solução bacana? Envie para nós! Até mais!

Circunferência no Plano Cartesiano

Olá, sejam bem vindos! Hoje falamos sobre a equação da circunferência no plano cartesiano, sobre a definição da expressão, das regiões associadas ao plano e fornecemos alguns exemplos relacionados. Boa aula!

Quantas são as Funções Injetoras de A em B?

Olá, bem vindos! No vídeo de hoje, resolvemos um problema que envolve o conceito de função, a definição da função injetora e os arranjos simples. Até mais!

Funções Modulares: uma introdução

Olá, hoje trazemos um pequeno vídeo envolvendo a função modular. Apenas para dar uma breve introdução sobre o comportamento desta função, já que isto serve de base para outras análise, como por exemplo as equações e inequações modulares. Até mais!

Permutações com Repetição: um exemplo!

Olá, bem vindos! Hoje falamos sobre um exemplo das aplicações com repetição. Mostramos dois exemplos deste mesmo problema e como resolvê-los. Até mais!

Teorema de Tales e os Teoremas das Bissetrizes Interna e Externa do Triângulo

Olá, hoje falamos sobre:

— o teorema de tales envolvendo segmentos proporcionais relacionados às retas paralelas cortadas por uma ou mais transversais;

— duas consequências diretas do teorema de Tales: o teorema da bissetriz interna e o teorema da bissetriz externa em um triângulo ABC.

Não demonstramos nenhum dos dois teoremas, mas em breve as faremos (as demonstrações). Até mais!