Um Problema do ITA: Cinemática Escalar

Existem muitos problemas de cinemática elementar que são muito difíceis. Especialmente quando os cronômetros de dois objetos não estão sincronizados, fazendo com que seus instantes iniciais de contagem de tempo sejam diferentes.

Trazemos então o seguinte problema, do ITA, um vestibular extremamente difícil que exige um alto nível de conhecimento de seus candidatos nas áreas de Matemática, Física, Química, Língua Portuguesa e Lingua Inglesa. Segue o enunciado do problema:

Um móvel A parte da origem O, com velocidade inicial nula, no instante t_0 = 0 e percorre o eixo Ox com aceleração constante a. Após um intervalo de tempo \Delta t, contado a partir da saída de A, um segundo móvel B parte de O com uma aceleração igual a n \cdot a, sendo n > 1. B alcançará A no instante:

a) t = \left(\frac{\sqrt{n}}{\sqrt{n} - 1} + 1\right)\Delta t

b) t = \left(\frac{\sqrt{n}}{\sqrt{n} - 1} - 1\right)\Delta t

c) t = \left(\frac{\sqrt{n}-1}{\sqrt{n}}\right)\Delta t

d) t = \left(\frac{\sqrt{n}+1}{\sqrt{n}}\right)\Delta t

e) t = \left(\frac{\sqrt{n}}{\sqrt{n}-1}\right)\Delta t

O móvel A move-se a partir do repouso com aceleração a, o que ocorre durante um \Delta t, ou seja, seus espaços em função do tempo ficam dados pela equação:

S_A = S_{0_A} + v_{0_A} \Delta t_A + \frac{a}{2} (\Delta t_A)^2

Para o móvel B teremos:

S_B = S_{0_B} + v_{0_B} (\Delta t_B) + \frac{n \cdot a}{2} (\Delta t_B)^2

Sabemos que o móvel A partiu do repouso, portanto v_{0_A} = 0 e queremos saber em que instantes A e B se encontrarão, ou seja, quando teremos S_A = S_B, assim:

S_A = S_B \Leftrightarrow S_{0_A} + \frac{a}{2} (\Delta t_A)^2  = S_{0_B} + v_{0_B} (\Delta t_B) + \frac{n \cdot a}{2} (\Delta t_B)^2

Como A e B partem do mesmo ponto temos S_{0_A} = S_{0_B} e, então:

\frac{a}{2} (\Delta t_A)^2  = v_{0_B} (\Delta t_B) + \frac{n \cdot a}{2} (\Delta t_B)^2

Agora faremos uma suposição crucial: a de que v_{0_B} = 0, admitindo que B também partiu do repouso, daí:

\frac{a}{2} (\Delta t_A)^2  = \frac{n \cdot a}{2} (\Delta t_B)^2

Então, como n \cdot a \geq 0, teremos:

\sqrt{\frac{a}{2}} \cdot \Delta t_A  = \sqrt{\frac{n \cdot a}{2}} (\Delta t_B) \Leftrightarrow \sqrt{\frac{a}{2}} \cdot \Delta t_A  = \sqrt{n} \cdot \sqrt{\frac{a}{2}} (\Delta t_B)

Simplificando \sqrt{\frac{a}{2}} em ambos os membros teremos:

\Delta t_A  = \sqrt{n} \cdot (\Delta t_B)

Chegamos onde queríamos. Veja que \Delta t_A  = t - t_{0_A} e que t_{0_A} = 0, ou seja, \Delta t_A = t. Por outro lado, \Delta t_B = t - t_{0_B} e t_{0_B} = \Delta t, portanto \Delta t_B = t - \Delta t; assim:

t = \sqrt{n} (t - \Delta t) \Leftrightarrow t = \sqrt{n} \cdot t - \sqrt{n} \cdot \Delta t

Finalmente, podemos escrever: \sqrt{n} \cdot t - t  = \sqrt{n} \Delta t. Ou como aparece nas opções:

t = \left(\frac{\sqrt{n}}{\sqrt{n} - 1}\right) \Delta t

Opção E.

O problema foi enviado por Arthur Rocha.

Até a próxima.

[LSB]

Fala que te escuto: