Uma “Pequena” Aula sobre Termometria

Fogo

Um dos assuntos iniciais do estudo da física para os alunos do ensino médio concentra-se na área que envolve a medida das temperaturas bem como o conceito físico de calor.

Como quase tudo no estudo de física, muitas vezes o conhecimento popular — o famoso senso comum — não bate com o conhecimento físico correto do assunto e, por isso, muitas pessoas acabam por errar problemas que envolvem conceitos simples no estudo desta disciplina.

Questionamentos como “… o que significa dizer que algo está “quente” ou “frio”?” costumam confundir-se com a ideia física de receber (ou ceder) energia térmica e isso, pode ou não atrapalhar o entendimento de certos problemas principalmente quando se trata de Termologia, a grande área da qual trata este assunto.

Além desse tema inicial, é importante conhecer assuntos que envolvem as escalas termométricas e a conversão mútua entre essas escalas de forma que se possa expressar a medida dessa temperatura em diversas escalas distintas, já que umas são mais ou menos usuais do que outras.

Ademais, há o conceito de equilíbrio térmico e a Lei Zero da Termodinâmica, bem como a comparação das variações de temperatura entre escalas, algo também muito abordado neste assunto.

Tendo tudo isso em mente, assista essa aula que fala sobre isso:

E aqui tem uma lista de exercícios para treinar sobre o assunto:

Finalizando é o de sempre… tendo dúvidas, procure-nos!

Até a próxima!

[LSB]

Problema da Semana #12: Potências

Senhor.

Vamos a mais um problema da semana, desta vez proposto pelo ilustríssimo mentor Paulo de Sousa Sobrinho, mais conhecido por Paulinho. Segue o enunciado:

Sendo x + \frac{1}{x} = \sqrt{2}, calcular o valor de x^{2021} + \frac{1}{x^{2021}}.

Agora é com você , mãos a obra e nos vemos em breve, na próxima solução.

Até lá.

[LSB]

Problema da Semana #11: Solução Sem Logaritmos!

Expressão

Vamos a solução de mais um problema da semana. Eis o enunciado da última semana:

Sendo 147^x = 189 calcule o valor de 7^{\frac{1-2x}{3(x-3)}}.

Primeiro. vejamos que 147 = 21 \cdot 7 e que 189 = 27 \cdot 7; com isso, teremos:

(21 \cdot 7)^x = 27 \cdot 7

como 21 = 3 \cdot 7 e 27 = 3^3 podemos escrever:

3^x \cdot 7^x \cdot 7^x = 3^3 \cdot 7^1

Arranjando os termos:

\frac{3^x}{3^3} = \frac{7^1}{7^{2x}}

Portanto:

3^{x-3}= 7^{1 - 2x}

Agora, elevando ambos os membros a \frac{1}{x-3}, ficamos com:

(3^{x-3})^{\frac{1}{x-3}}= (7^{1 - 2x})^{\frac{1}{x-3}}

Estamos quase lá, pois agora temos 3 = 7^{\frac{1 - 2x}{x-3}}. Elevando ambos os lados a \frac{1}{3}:

3^{\frac{1}{3}} = (7^{\frac{1 - 2x}{x-3}})^{\frac{1}{3}}

Ou seja, 3^{\frac{1}{3}} = 7^{\frac{1 - 2x}{3(x-3)}}, assim a resposta é 3^{\frac{1}{3}} ou \sqrt[3]{3}.

Resolveram este problema:

  • Micael França.

Listagem de problemas resolvidos até agora:

  • (4) Micael França
  • (3) Ygor Gabriel
  • (2) Yasmim Silva
  • (2) Ygor Farias
  • (2) Arthur Rocha
  • (2) @mariopersico_
  • (2) Iuri Henrique
  • (1) Alef
  • (1) Lucca Gabriel
  • (1) Gustavo
  • (1) Lucas Lopes
  • (1) Davi do Nascimento Teles Barata
  • (1) Enzo Botarelli

Existe o Valor de b?

Estamos de volta com mais uma dúvida enviada para nós.

O problema em questão trata de sistemas de numeração. Neste caso, além da base 10 há outras bases envolvidas.

A solução segue na imagem abaixo:

Veja que não é possível, uma vez que b não será um número inteiro.

Até a próxima.

[LSB]

Problema da Semana #11: Tente Calcular o Valor da Expressão

Mestre China

Segue o problema proposto, mais uma vez pelo grande mentor, José Maria Gomes; o grande China.

Sendo 147^x = 189 calcule o valor de 7^{\frac{1-2x}{3(x-3)}}.

Um problema envolvendo as meras propriedades de potenciação.

Este é um assunto muito importante para todos os alunos que farão um concurso no qual a álgebra elementar é cobrada. Agora é com você! Acha que consegue? Mãos a obra.

Até a solução!

[LSB]

Problema da Semana #10: Uma Solução Mais ou Menos Simples

Carpete

Segue a solução do problema da semana #10. Vamos relembrar o enunciado.

Na figura abaixo, o terreno retangular ABCD foi loteado e os números que aparecem no interior de alguns destes lotes, indicam suas respectivas áreas em \text{km}^2.

A medida da área indicada pelo lote da letra x, em \text{km}^2 é igual a:

a) 70

b) 40

c) 60

d) 50

e) 54

Uma solução “simples” é chamar a áreas desconhecidas em branco de a, b, c e d. Como na figura abaixo:

Perceba que a área do triângulo BCF é igual à área do triângulo CDE, pois ambos são iguais a metade da área do retângulo (esse pode ser um fato difícil de perceber, pense um pouco até que isso fique claro para você). Assim, podemos escrever:

a+x + c = b + x + d \Leftrightarrow a+c = b+d

Pelo mesmo motivo teremos:

9 + b + 35 + 6 + d = a + x + c \Leftrightarrow 50 + \underbrace{b + d}_{= a+c} = x + a + c

Logo x = 50. Há outra solução usando o Teorema dos Carpetes. Mas essa deixaremos para o grande mentor José Maria Gomes (o famoso China).

Resolveram este Problema:

  • Micael França

Listagem de problemas resolvidos até agora:

  • (3) Ygor Gabriel
  • (3) Micael França
  • (2) Yasmim Silva
  • (2) Ygor Farias
  • (2) Arthur Rocha
  • (2) @mariopersico_
  • (2) Iuri Henrique
  • (1) Alef
  • (1) Lucca Gabriel
  • (1) Gustavo
  • (1) Lucas Lopes
  • (1) Davi do Nascimento Teles Barata
  • (1) Enzo Botarelli

Se seu nome não apareceu, me avise pois pode ser que eu não tenha visto a sua solução enviada.

Bora pra cima!